optiPEEP: Minimizing Lung Injury During Laparoscopy in Steep Trendelenburg Position

Sponsor
University Hospital, Antwerp (Other)
Overall Status
Completed
CT.gov ID
NCT04900714
Collaborator
(none)
23
1
1
3.1
7.4

Study Details

Study Description

Brief Summary

The investigators hypothesize that the level of PEEP is often suboptimally applied in certain operative conditions, such as in laparoscopy with head down (Trendelenburg) positioning. This can result in excessive levels of lung stress and postoperative pulmonary complications.

In patients with steep Trendelenburg and a pneumoperitoneum, the investigators aim to

  1. measure apical versus basal atelectasis using the lung ultrasound score

  2. compare lung ultrasound scores at different PEEP levels

  3. compare respiratory mechanics at the different PEEP levels

  4. contrast the optimal PEEP level to standard practice

  5. provide guidance to optimal PEEP titration in this setting for the clinician

Condition or Disease Intervention/Treatment Phase
  • Procedure: Decremental PEEP
  • Diagnostic Test: Lung ultrasound score
  • Diagnostic Test: Blood gas analysis
  • Diagnostic Test: Registration of respiratory mechanics
  • Diagnostic Test: Evaluation of dead space
N/A

Detailed Description

The investigators hypothesize that the level of positive end-expiratory pressure (PEEP) is often incorrectly applied in certain operative conditions, such as in laparoscopy with head down (Trendelenburg) positioning. This can result in excessive levels of lung stress and postoperative pulmonary complications.

Incorrect intra-operative ventilator management can be harmful for the patient, potentially leading to postoperative pulmonary complications and ventilator-induced lung injury. During routine anesthesia procedures, most anesthetists will set the ventilator by rule of thumb with a PEEP of 4-6 cmH2O, a tidal volume of 6-8 ml/kg of ideal body weight and a frequency of 10-15 breaths per minute in order to provide lung protective ventilation. However, due to recent advances in surgical practice, patients are more frequently placed in non- physiological states, such as Trendelenburg position up to 30° with concurrent pneumoperitoneum and intra-abdominal pressures of 15mmHg or higher, as in for example robot-assisted radical prostatectomy or gynecological procedures. This extreme positioning and increased intra-abdominal pressure can have a significant effect on respiratory mechanics and can potentially result in excessive lung stress. The changes in applied positive pressure ventilation will result in changes of regional ventilation: both an increased amount of atelectasis and an increased amount of regional hyperinflation are observed in this setting. The ideal PEEP level balances the recruitment of atelectasis versus excessive hyperinflation. These changes in regional ventilation can be assessed by lung ultrasound. The lung ultrasound score can distinguish atelectasis from normal aeration in the different lung regions of interest.

This project is designed as a single center cohort study. Non-obese (BMI < 30kg/m2), lung-healthy non-pregnant, non-smoking individuals without right sided heart failure, scheduled for elective laparoscopy of the lower abdomen, will be recruited. Standardized induction and maintenance with propofol TCI (3-6μg/l plasma concentration as calculated by the Marsh model), sufentanil (0.2μg/kg) and rocuronium (0.6mg/kg) will be provided. Neuromuscular blockade will be monitored using a train-of-four (TOF) monitor and kept with a TOF count < 1 throughout the study using additional doses if indicated. A radial arterial line will be placed. Mechanical ventilation will be provided in volume control mode with a tidal volume of 4-6 ml/kg of ideal body weight (IBW) aiming for a driving pressure ≤ 15cmH2O, a starting PEEP of 5cmH2O, a frequency of 12-18 breaths per minute titrated to the end-tidal CO2 measurement and an initial FiO2 of 0.4. An esophageal balloon catheter with pressure sensor will be used to calculate transpulmonary pressures. The balloon and pressure sensor will be calibrated as per manufacturers guideline. Respiratory parameters will be recorded and saved for later evaluation using the FluxMed GrT monitor and software (MBMED, Argentina). After inflation of the pneumoperitoneum, lung ultrasound will be performed bilaterally at the midclavicular line between the second and third ribs, at the posterior axillary line above the level of T4 and at the posterior axillary line closely superior to the diaphragm, thus retaining 6 ultrasound loops which will be saved for post-hoc lung ultrasound scoring. The lung ultrasound measurements will be repeated at different decremental levels of PEEP: 15, 10, 5 and 0 cmH2O respectively. Arterial blood gas analysis will be performed before insufflation of the pneumoperitoneum and repeated at each level of PEEP. A minimum of 4 minutes equilibration time will be provided after changing PEEP.

Study Design

Study Type:
Interventional
Actual Enrollment :
23 participants
Allocation:
N/A
Intervention Model:
Single Group Assignment
Masking:
None (Open Label)
Primary Purpose:
Prevention
Official Title:
Minimizing Lung Injury During Laparoscopy in Steep Trendelenburg Position
Actual Study Start Date :
Jun 21, 2021
Actual Primary Completion Date :
Sep 23, 2021
Actual Study Completion Date :
Sep 23, 2021

Arms and Interventions

Arm Intervention/Treatment
Experimental: Decremental PEEP

Every participant will be exposed to a stepwise decremental PEEP.

Procedure: Decremental PEEP
High PEEP to low PEEP.

Diagnostic Test: Lung ultrasound score
lung ultrasound to determine the extend of atelectasis. Uses validated lung ultrasound score.

Diagnostic Test: Blood gas analysis
Blood gas analysis to determine arterial oxygen tension

Diagnostic Test: Registration of respiratory mechanics
Pressures and volumes will be registered by the Fluxmed respiratory monitor (MBMED, Argentina)

Diagnostic Test: Evaluation of dead space
Dead space will be measured non-invasively using volumetric capnography on the FluxMed respiratory monitor (MBMED, Argentina)

Outcome Measures

Primary Outcome Measures

  1. Lung ultrasound score [Perioperatively]

    Lung ultrasound score per level of PEEP (15-10-5-0 cmH2O). The score is dimensionless. A cumulative count is calculated for each level of PEEP by adding the scores from the 6 scanned lung regions together. The lung ultrasound score is a measure of atelectasis.

Secondary Outcome Measures

  1. Transpulmonary pressure (cmH2O) [Perioperatively]

    Transpulmonary pressure per level of PEEP (15-10-5-0 cmH2O). Transpulmonary pressure is calculated as plateau airway pressure minus esophageal pressure (at the same timepoint). Plateau airway pressures (cmH2O) are measured at the ventilator during an inspiratory pause. Esophageal pressures (cmH2O) are measured with an esophageal balloon and pressure transducer. Esophageal pressures are proven to correlate closely to pleural pressures. The Fluxmed device (MBMED, Argentina) is used to capture pressures and volumes at the ventilator.

  2. Driving pressure (cmH2O) [Perioperatively]

    Driving pressures per level of PEEP (15-10-5-0 cmH2O). Driving pressure (cmH2O) is calculated as plateau airway pressure minus positive end-expiratory pressure (PEEP). Plateau airway pressures (cmH2O) are measured at the ventilator during an inspiratory pause. PEEP (cmH2O) is measured at the ventilator at end-expiration. The Fluxmed device (MBMED, Argentina) is used to capture pressures and volumes at the ventilator.

  3. Dynamic pulmonary compliance (ml/cmH2O) [Perioperatively]

    Dynamic pulmonary compliance per level of PEEP (15-10-5-0 cmH2O). The dynamic pulmonary compliance is calculated as tidal volume divided by the driving pressure. Tidal volumes (ml) are measured at the ventilator. Driving pressures are calculated as mentioned in the description of outcome 3. The Fluxmed device (MBMED, Argentina) is used to capture pressures and volumes at the ventilator.

  4. P/F ratio (Horowitz index, mmHg / %) [Perioperatively]

    Ratio of the arterial oxygen tension (mmHg) divided by the fraction of inspired oxygen (%) per level of PEEP (15-10-5-0 cmH2O). The arterial oxygen tension is measured at a point-of-care blood gas analyzer (Roche Cobas, Basel, Swiss) The inspiratory oxygen fraction (%) is measured at the ventilator.

  5. Dead space [Perioperatively]

    Median dead space per level of PEEP (15-10-5-0 cmH2O).

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years to 80 Years
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
Yes
Inclusion Criteria:
  • Elective laparoscopy in the Trendelenburg (head-down) position
Exclusion Criteria:
  • smoker

  • lung disease (e.g. asthma, COPD, emphysema)

  • BMI > 30 kg/m2

Contacts and Locations

Locations

Site City State Country Postal Code
1 Antwerp University Hospital Edegem Antwerp Belgium 2650

Sponsors and Collaborators

  • University Hospital, Antwerp

Investigators

  • Principal Investigator: Vera Saldien, MD, PhD, Head of the department of anesthesiology
  • Study Chair: Tom Schepens, MD, PhD, Anesthetist/intensivist
  • Study Chair: Gregory De Meyer, MD, Anesthetist in training
  • Study Director: Stuart G Morrison, MD, Staff anesthetist

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
University Hospital, Antwerp
ClinicalTrials.gov Identifier:
NCT04900714
Other Study ID Numbers:
  • 20/40/516
  • 1378
  • 20/40/516
First Posted:
May 25, 2021
Last Update Posted:
Jan 26, 2022
Last Verified:
Jan 1, 2022
Individual Participant Data (IPD) Sharing Statement:
Undecided
Plan to Share IPD:
Undecided
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Keywords provided by University Hospital, Antwerp
Additional relevant MeSH terms:

Study Results

No Results Posted as of Jan 26, 2022