Ankle Robotics After Stroke

Sponsor
NextStep Robotics Inc. (Industry)
Overall Status
Recruiting
CT.gov ID
NCT04594837
Collaborator
(none)
140
1
3
32.4
4.3

Study Details

Study Description

Brief Summary

The randomized study (in Phase II of the U44) compares the efficacy and durability of 9 weeks (18 sessions) of robot-assisted physical therapy (PTR) versus physical therapy (PT) alone on foot drop as assessed by gait biomechanics (ankle angle at initial contact, peak swing ankle angle, number of heel-first strikes - % total steps, gait velocity) and blinded clinician assessment (dorsiflexion active range of motion, ankle muscle strength, assistive device needs).

Condition or Disease Intervention/Treatment Phase
  • Device: Unpowered Physical Therapy Robot (Phase I/Phase II)
  • Device: PTR Physical Therapy while wearing Robot group (Phase II)
  • Other: Physical Therapy Only (Phase II)
N/A

Detailed Description

This proposal investigates a portable ankle robot (AMBLE) to be used during over-ground mobility training to reduce foot drop and improve walking function in hemiparetic (half-body, partially paralyzed stroke patients with foot drop (inability to properly lift and clear the foot during walking. About 30% of stroke survivors are left with permanent ankle weakness that impairs their mobility and increases fall-risk. Currently, stroke survivors with foot drop live with a cane or other assistive device, and often ankle-foot braces (AFOs) for safety. These assistive devices do not reverse or reduce the underlying neurological foot drop problem. Recognizing the crucial role of ankle function in walking and balance, and recognizing that the distal part of the lower extremity often suffers the greatest damage after a human stroke, the investigators have come up with a portable ankle robot as a tool for therapists to help shape recovery of walking.

The AMBLE, and its underlying control system, uses information about how patients are walking from one step to another to assist and shape foot lifting so as to help re- train walking recovery by a process that neuroscientists call motor learning. It is the combination of the partially paralyzed stroke survivor's movement efforts with timely assistance "only as needed" by the robot that investigators and others show is the key to movement recovery after stroke. Thus, the ankle robot is not a crutch, but a learning and measuring device that incrementally "gets out of the way" of the learner to facilitate human robot learning such that the human takes over more of the volitional learning.

The research team at University of Maryland has demonstrated in 4 prior studies using seated and treadmill based robot assisted training using a bulky laboratory robot programmed with a motor learning formula that can improve ankle motor control in both the early and chronic phases of stroke, and this can improve over-ground unassisted walking. A significant proportion of stroke survivors showed session by session recovery of volitional (not assisted by the robot) ankle lifting during walking across 6 weeks of three 30- 45 minute sessions of robot training while walking on a treadmill, even years after their stroke. In fact, it has been found that two weeks of 3 sessions per week ankle robotics training was the time profile for most motor learning recovery to reduce foot drop. This information has informed the design of the study described below.

Previous research was done using a bulky, heavy (~8 lbs), and expensive laboratory robot that only allowed seated or treadmill based training because it was tethered by wires. This greatly limits how it can be used by physical therapists, and is not appropriately configured for ease of use by physical therapists in practice. NextStep Robotics invented and built the ankle robots motor learning programs with a lot of input from physical therapists and other rehabilitation clinicians into a portable lightweight robot that can be used over-ground anywhere with blue tooth controls that also tell the therapist precisely how well the stroke survivors is learning, step by step. It is this new portable ankle robot that is configured for use in practice that investigators seek to test in studies with physical therapists using it fully integrated into their usual outpatient stroke mobility recovery training at University of Maryland Orthopedics and Rehabilitation Institute.

This U44 Award from the National Institute of Neurological Disorders and Stroke (NINDS) is not a typical single phase randomized clinical study, but consists of Phase I that completes commercial design of the robot the first year, followed by Phase II randomized clinical trial across years 2-4 of a finalized commercial version of the ankle robot.

Phase II (following completion of commercial design in Phase I) is a randomized (group assignment by chance), blinded (outcome testing done by technicians unaware of patient group assignment), two arm (2 groups) study that investigates the hypothesis that in subacute (6 weeks to 6 months) stroke subjects with foot drop, AMBLE integrated physical therapy (PTR) consisting of 18 training sessions over nine weeks is more effective than usual physical therapy (PT) to improve foot drop outcomes measured by movement analyses of walking, and by standardized clinical assessments of walking including specific foot drop outcomes as assessed by a certified PT clinician (blinded to treatment assignment), cross checked by blinded review of 2 other clinicians of films of the standardized mobility assessments to provide a consensus impartial judgement. Notably, this Phase II study focuses on sub-acute stroke recovery (6 weeks to 6 months) because it represents a therapeutic window into which conventional outpatient physical therapy is typically front-loaded to optimize outcomes. This phase of stroke rehabilitation is selected to test the AMBLE in real world settings when outpatient physical therapy typically occurs, using a treatment frequency and duration (18 physical therapy sessions across 9 weeks) that is representative of practice in Maryland and most of the United States. If wearing the AMBLE robot during physical therapy in this time-frame reduces foot drop and improves longer term outcomes measured 3 months after all robotics therapy has ended, then the investigators will apply for FDA approval for the first robotics device to actively treat foot drop after stroke.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
140 participants
Allocation:
Randomized
Intervention Model:
Parallel Assignment
Masking:
Single (Outcomes Assessor)
Primary Purpose:
Other
Official Title:
Portable Ankle Robotics to Reverse Foot Drop After Stroke
Actual Study Start Date :
Apr 21, 2022
Anticipated Primary Completion Date :
Apr 30, 2024
Anticipated Study Completion Date :
Dec 31, 2024

Arms and Interventions

Arm Intervention/Treatment
Experimental: Unpowered Physical Therapy Robot (Phase I)

2 weeks (3 sessions per week, total 6 sessions, ~30-45 minutes duration each session) of over-ground gait training while wearing the unpowered robot (mass only, no robotic active assistance) on foot drop in chronic hemiparetic stroke patients. f training with the unpowered robot does not significantly improve key foot drop outcomes as hypothesized, then Phase II will consist of a two group design comparing PTR (Physical Therapy while wearing Robot group) vs. PT (Physical Therapy only). If Phase I shows that wearing the unpowered robot improves the foot drop outcomes, then Phase II will use a three group randomized study design comparing PTR, PT and UPTR (Unpowered Physical Therapy Robot) groups

Device: Unpowered Physical Therapy Robot (Phase I/Phase II)
2 weeks (3 sessions per week, total 6 sessions, ~30-45 minutes duration each session) of over-ground gait training while wearing the unpowered robot (mass only, no robotic active assistance) on foot drop in chronic hemiparetic stroke patients. f training with the unpowered robot does not significantly improve key foot drop outcomes as hypothesized, then Phase II will consist of a two group design comparing PTR (Physical Therapy while wearing Robot group) vs. PT (Physical Therapy only). If Phase I shows that wearing the unpowered robot improves the foot drop outcomes, then Phase II will use a three group randomized study design comparing PTR, PT and UPTR (Unpowered Physical Therapy Robot) groups.
Other Names:
  • UPTR
  • Experimental: PTR (Physical Therapy while wearing Robot group) (Phase II)

    Subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

    Device: PTR Physical Therapy while wearing Robot group (Phase II)
    Subjects receive 18 one-hour PT training sessions over 9 weeks while wearing the robot initially parameterized to individual deficit severity. Subjects perform over-ground mobility tasks of increasing challenge with robotic assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.
    Other Names:
  • PTR
  • Experimental: PT (Physical Therapy Only) (Phase II)

    Subjects receive 18 one-hour PT training sessions over 9 weeks. Subjects perform over-ground mobility tasks of increasing challenge with therapist assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.

    Other: Physical Therapy Only (Phase II)
    Subjects receive 18 one-hour PT training sessions over 9 weeks. Subjects perform over-ground mobility tasks of increasing challenge with therapist assist, as needed. Training is generally divided into 3 phases based on individual ability to address gait deficits, postural transitions, physical demand and environmental terrain.
    Other Names:
  • PT
  • Outcome Measures

    Primary Outcome Measures

    1. Angle at Initial Contact [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Angle at initial contact averaged across each gait cycle for each subject at a given testing time point.

    2. Swing Dorsiflexion [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Peak swing dorsiflexion averaged across each gait cycle for each subject at a given testing time point.

    3. Number of Heel-First Foot Strikes [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Number of heel-first foot strikes for each subject at a given testing time point.

    4. Gait Velocity [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Average gait velocity (meters/second) for each subject at a given testing time point.

    Secondary Outcome Measures

    1. Active range of motion for Dorsiflexion [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Active range of motion measured for dorsiflexion by blinded clinician.

    2. Ankle Muscle Strength [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Measurement of ankle strength by blinded clinician using the MMT (manual muscle testing)

    3. Number of Participants Using Assistive Devices and Ankle Foot Orthoses [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Number of Participants Using Assistive Devices and Ankle Foot Orthoses

    4. Dynamic Gait Index [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Assesses gait, balance, and fall risk; ranges from 0-24; higher score is better

    5. Berg Balance Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      A 14-item objective measure designed to assess static balance and fall risk; ranges from 0-56; higher score is better

    6. Stroke Impact Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      A self-report questionnaire that evaluates disability and health-related quality of life after stroke.

    7. Activities-Specific Balance Confidence Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      A self-report measure of balance confidence in performing various activities without losing balance; ranges from 0-1600; higher score is better

    8. CES-D (Center for Epidemiological Studies-Depression) [Change from Baseline at both 9 Weeks and at 21 Weeks]

      The Center of Epidemiological Studies-Depression, a 20-item measure that asks to rate how often over the past week the patient experienced symptoms associated with depression; ranges from 0-60; high scores indicating greater depressive symptoms.

    9. NIH Stroke Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Tool used to quantify the impairment caused by a stroke, composed of 11 items; ranges from 0-42; higher score indicates greater impairment.

    10. Falls Efficacy Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      A 16-item self-administered questionnaire designed to assess fear of falling; ranges 16-64; higher score indicates greater fear of falling.

    11. Fatigue Assessment Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      10-item scale evaluating symptoms of fatigue; ranges from 10-50; higher score indicates greater levels of fatigue.

    12. Modified Ashworth Scale [Change from Baseline at both 9 Weeks and at 21 Weeks]

      Measures spasticity in patients; ranges from 0-4; higher score indicates more spasticity/rigidity.

    Eligibility Criteria

    Criteria

    Ages Eligible for Study:
    18 Years and Older
    Sexes Eligible for Study:
    All
    Accepts Healthy Volunteers:
    No
    Inclusion Criteria:
    • Ages 18 and older

    • In the subacute phase of stroke recovery (>6 weeks to <6 months post-stroke) with residual hemiparesis of the lower extremity that includes symptoms of foot-drop.

    • Clear indications of hemiparetic gait by clinical observation

    Exclusion Criteria:
    • Cardiac history of (a) unstable angina, (b) recent (less than 3 months) myocardial infarction, congestive heart failure (NYHA category II); (c) hemodynamically significant valvular dysfunction

    • Hypertension that is a contraindication for routine physical therapy (greater than 160/100 on two assessments).

    • Medical History: (a) recent hospitalization (less than 3 months) for severe medical disease, (b) symptomatic peripheral arterial occlusive disease, (c) orthopedic or chronic pain conditions that significantly alter gait function, (d) pulmonary or renal failure (e) active cancer

    • History of non-stroke neuromuscular disorder restricting gait.

    • Aphasia or cognitive functioning that confounds participation, defined as unable to follow 2 step commands or judgment of the medical officer or therapist.

    Contacts and Locations

    Locations

    Site City State Country Postal Code
    1 University of Maryland Rehabilitation & Orthopaedic Institute Baltimore Maryland United States 21207

    Sponsors and Collaborators

    • NextStep Robotics Inc.

    Investigators

    • Study Director: Brad Hennessie, MHA, MBA, NextStep Robotics Inc.

    Study Documents (Full-Text)

    None provided.

    More Information

    Publications

    None provided.
    Responsible Party:
    NextStep Robotics Inc.
    ClinicalTrials.gov Identifier:
    NCT04594837
    Other Study ID Numbers:
    • 1 U44 111076-01
    First Posted:
    Oct 20, 2020
    Last Update Posted:
    May 20, 2022
    Last Verified:
    May 1, 2022
    Studies a U.S. FDA-regulated Drug Product:
    No
    Studies a U.S. FDA-regulated Device Product:
    No
    Additional relevant MeSH terms:

    Study Results

    No Results Posted as of May 20, 2022