Effects of Fructose/Glucose-rich Diet on Brown Fat in Healthy Subjects (GB7)

Sponsor
Université de Sherbrooke (Other)
Overall Status
Completed
CT.gov ID
NCT03188835
Collaborator
McMaster University (Other), University of Ottawa (Other)
15
1
3
47.2
0.3

Study Details

Study Description

Brief Summary

Activating brown and beige adipose tissue (herein described as BAT) has been recently recognized as a potential means to increase energy expenditure and lower blood glucose, however, BAT activity appears to be reduced with obesity, aging or Type 2 Diabetes (T2D). BAT has the unique capability to burn large amounts of sugar and fat and effectively dissipate this energy as heat due to the expression of uncoupling protein 1 (UCP1) which is controlled by a thermogenic gene program of transcription factors, co-activators and protein kinases. Thus, enhancing the thermogenic gene program may be beneficial for treating obesity and T2D. Despite the importance of BAT in regulating metabolism our understanding of the factors which suppress its metabolic activity with obesity, aging and T2D are largely unknown. Recently, it was shown that peripheral serotonin, which is regulated by the tryptophan hydroxylase 1 (Tph1), is a negative regulator of BAT metabolic activity. In addition to serotonin, other studies have indicated that pro-inflammatory stimuli may also inhibit BAT metabolic activity. These data suggest that reduced activation of BAT may be due to increases in peripheral serotonin and inflammation. Importantly, the gut microbiome has recently been recognized as an important regulator of serotonin and inflammatory pathways suggesting the observed effects of the microbiome on obesity, T2D may be mediated in part through reductions in BAT activity.

One mechanism by which the environment may impact BAT activity and the thermogenic gene program over the last 3 decades involves changes in our food supply as result of changes in agricultural production (chlorpyrifos, glyphosphate) and the addition of food additives (fructose). These agents have been reported to alter inflammation, serotonin metabolism and the gut microbiome indicating a potential bimodal (direct and indirect via the microbiome) mechanism by which they may alter the thermogenic gene program and contribute to chronic metabolic disease. Thus, our overarching hypothesis is that environmental agents and additives related to food production may contribute to the reduced metabolic activity of BAT. The objective is to identify and characterize how food production agents and additives reduce the metabolic activity of BAT.

Condition or Disease Intervention/Treatment Phase
  • Dietary Supplement: Diet
  • Other: cold exposure
  • Radiation: 18FDG
  • Radiation: 11C-acetate
  • Radiation: [3-3H]-glucose
  • Other: [U-13C]-palmitate
  • Other: 2H-Glycerol
  • Device: MRI/MRS
  • Device: Electromyogram (EMG)
  • Device: DXA
  • Device: Indirect calorimetry
N/A

Detailed Description

Each subject will follow 3 metabolic studies (A, B and C), each lasting 7.5h which includes a 3h acute cold exposure.

These studies will be almost identical: same perfusion of tracers, same number of Positron Emission Tomography (PET) acquisitions and same number of Magnetic Resonance Imaging (MRI) associated with Magnetic Resonance Spectroscopy (MRS) acquisitions .

The difference will be in the diet ingested by the subjects two weeks before each metabolic study: during protocol A, the subjects will follow an isocaloric diet; during protocol B, the subjects will follow the same isocaloric diet supplemented with a daily beverage containing +25% of energy intake from fructose; and during protocol C, the subjects will follow the same isocaloric diet supplemented with a daily beverage containing +25% of energy intake from glucose.

Stool samples will be collected for each metabolic study for microbiome flora and metabolites.

Study Design

Study Type:
Interventional
Actual Enrollment :
15 participants
Allocation:
Randomized
Intervention Model:
Parallel Assignment
Masking:
Double (Participant, Outcomes Assessor)
Primary Purpose:
Basic Science
Official Title:
Brown Fat Energy Metabolism During Cold Exposure: Effects of Fructose- or Glucose-rich Diet in Healthy Subjects
Actual Study Start Date :
May 23, 2017
Actual Primary Completion Date :
Dec 17, 2020
Actual Study Completion Date :
Apr 30, 2021

Arms and Interventions

Arm Intervention/Treatment
Other: Isocaloric Diet

Two weeks of isocaloric diet

Other: cold exposure
Acute cold exposure using a water-conditioned cooling suit will be applied from time 0 to 180 min. At the same time mean skin temperature will be measured by 11 thermocouples.

Radiation: 18FDG
I.v. injection of 18-fluorodeoxyglucose (18FDG) will be performed, followed by 30 min dynamic and 50 min wholebody PET/CT scanning.

Radiation: 11C-acetate
i.v. injection of 11C-acetate will be performed, followed by 20 min dynamic PET/CT scanning

Radiation: [3-3H]-glucose
i.v. administration of 1.5 uCi/min of [3-3H]-glucose

Other: [U-13C]-palmitate
i.v. administration of 0.08 umol/kg/min of [U-13C]-palmitate

Other: 2H-Glycerol
i.v. administration of 0.05 µmol/kg/min of 2H-glycerol

Device: MRI/MRS
Visceral and cervico-thoracic MRI and MRS acquisition.

Device: Electromyogram (EMG)
Skeletal muscle activity and shivering intensity will be measured by electromyography using surface electrodes

Device: DXA
Lean mass will be determined by dual-energy X-ray absorptiometry

Device: Indirect calorimetry
VCO2 will be measured by indirect calorimetry between 15 and 20 min every hour until time 180.

Other: Fructose diet

Two weeks of hypercaloric diet supplemented with fructose

Dietary Supplement: Diet
A 2 weeks of hypercaloric diet supplemented with fructose or glucose

Other: cold exposure
Acute cold exposure using a water-conditioned cooling suit will be applied from time 0 to 180 min. At the same time mean skin temperature will be measured by 11 thermocouples.

Radiation: 18FDG
I.v. injection of 18-fluorodeoxyglucose (18FDG) will be performed, followed by 30 min dynamic and 50 min wholebody PET/CT scanning.

Radiation: 11C-acetate
i.v. injection of 11C-acetate will be performed, followed by 20 min dynamic PET/CT scanning

Radiation: [3-3H]-glucose
i.v. administration of 1.5 uCi/min of [3-3H]-glucose

Other: [U-13C]-palmitate
i.v. administration of 0.08 umol/kg/min of [U-13C]-palmitate

Other: 2H-Glycerol
i.v. administration of 0.05 µmol/kg/min of 2H-glycerol

Device: MRI/MRS
Visceral and cervico-thoracic MRI and MRS acquisition.

Device: Electromyogram (EMG)
Skeletal muscle activity and shivering intensity will be measured by electromyography using surface electrodes

Device: DXA
Lean mass will be determined by dual-energy X-ray absorptiometry

Device: Indirect calorimetry
VCO2 will be measured by indirect calorimetry between 15 and 20 min every hour until time 180.

Other: Glucose diet

Two weeks of hypercaloric diet supplemented with glucose

Dietary Supplement: Diet
A 2 weeks of hypercaloric diet supplemented with fructose or glucose

Other: cold exposure
Acute cold exposure using a water-conditioned cooling suit will be applied from time 0 to 180 min. At the same time mean skin temperature will be measured by 11 thermocouples.

Radiation: 18FDG
I.v. injection of 18-fluorodeoxyglucose (18FDG) will be performed, followed by 30 min dynamic and 50 min wholebody PET/CT scanning.

Radiation: 11C-acetate
i.v. injection of 11C-acetate will be performed, followed by 20 min dynamic PET/CT scanning

Radiation: [3-3H]-glucose
i.v. administration of 1.5 uCi/min of [3-3H]-glucose

Other: [U-13C]-palmitate
i.v. administration of 0.08 umol/kg/min of [U-13C]-palmitate

Other: 2H-Glycerol
i.v. administration of 0.05 µmol/kg/min of 2H-glycerol

Device: MRI/MRS
Visceral and cervico-thoracic MRI and MRS acquisition.

Device: Electromyogram (EMG)
Skeletal muscle activity and shivering intensity will be measured by electromyography using surface electrodes

Device: DXA
Lean mass will be determined by dual-energy X-ray absorptiometry

Device: Indirect calorimetry
VCO2 will be measured by indirect calorimetry between 15 and 20 min every hour until time 180.

Outcome Measures

Primary Outcome Measures

  1. Microbiome flora [4 months]

    assessed from stool samples

  2. Microbiome metabolites [4 months]

    assessed from stool samples

  3. BAT oxidative metabolism [4 months]

    will be determined using i.v. injection of 11C-acetate during dynamic PET/CT scanning

  4. BAT triglyceride content [4 months]

    will be determined by radiodensity or MRS

Secondary Outcome Measures

  1. BAT blood flow [4 months]

    will be determined using i.v. injection of 11C-acetate during dynamic PET/CT scanning

  2. BAT net glucose uptake [4 months]

    will be assessed using i.v. injection of 18FDG with sequential dynamic PET/CT scanning.

  3. Whole-body glucose partitioning [4 months]

    will be assessed using i.v. injection of 18FDG with static PET/CT scanning

  4. BAT volume of metabolic activity [4 months]

    will be determined using a total body CT (16 mA) followed by a PET acquisition

  5. metabolites appearance rate [12 months]

    will be determined by perfusion of stable isotope tracers

  6. energy metabolism (whole body production) [4 months]

    by indirect calorimetry

  7. hormonal responses [12 months]

    analysed by colorimetric and Elisa tests

Eligibility Criteria

Criteria

Ages Eligible for Study:
20 Years to 35 Years
Sexes Eligible for Study:
Male
Accepts Healthy Volunteers:
Yes
Inclusion Criteria:
  • Healthy subjects: subjects with normal glucose tolerance determined according to an oral glucose tolerance test and with a BMI < 27 kg/m2 without first degree of familial history of type 2 diabetes (parents, siblings).
Exclusion Criteria:
  1. Plasma triglycerides > 5.0 mmol/L at fasting;

  2. More than 2 alcohol consumption per day;

  3. More than 1 cigarette per day;

  4. History of total cholesterol level > 7 mmol/L, of cardiovascular disease, hypertensive crisis;

  5. Treatment with fibrates, thiazolidinedione, insulin, beta-blockers or other drugs with effects on insulin resistance or lipid metabolism (exception for anti-hypertensive drugs, statins or metformin);

  6. Presence of a non-controlled thyroid disease, renal or hepatic disease, history of pancreatitis, bleeding diatheses, cardiovascular disease or any other serious medical conditions;

  7. History of serious gastrointestinal disorders (malabsorption, peptic ulcer, gastroesophageal reflux having required a surgery, etc.);

  8. Presence of a pacemaker;

  9. Have undergone of PET study or CT scan in the past year;

  10. Chronic administration of any medication;

Contacts and Locations

Locations

Site City State Country Postal Code
1 Centre de recherche du CHUS Sherbrooke Quebec Canada J1H 5N4

Sponsors and Collaborators

  • Université de Sherbrooke
  • McMaster University
  • University of Ottawa

Investigators

  • Principal Investigator: André C. Carpentier, Université de Sherbrooke

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
André Carpentier, tenured professor, Université de Sherbrooke
ClinicalTrials.gov Identifier:
NCT03188835
Other Study ID Numbers:
  • 2017-1459
First Posted:
Jun 15, 2017
Last Update Posted:
May 17, 2022
Last Verified:
May 1, 2022
Individual Participant Data (IPD) Sharing Statement:
No
Plan to Share IPD:
No
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Additional relevant MeSH terms:

Study Results

No Results Posted as of May 17, 2022