Comparison of Biocompatibility of Plasmapheresis Procedures With Citrate and Heparin Anticoagulation

Sponsor
University Medical Centre Ljubljana (Other)
Overall Status
Recruiting
CT.gov ID
NCT05191290
Collaborator
(none)
15
1
2
11.3
1.3

Study Details

Study Description

Brief Summary

Membrane plasmapheresis is one of the methods for treating immune diseases. Plasmapheresis removes autoantibodies and immune complexes, paraproteins, lipoproteins and reduces the concentration of cytokines. In membrane plasmapheresis, plasma is separated from blood cells by a highly permeable membrane. The filtered plasma is then discarded and replaced with replacement fluid. During the procedure, there is an activation of the coagulation system, because of the extracorporeal blood circulation. The anticoagulation during the procedure is therefore necessary.

Condition or Disease Intervention/Treatment Phase
  • Drug: unfractionated heparin
  • Drug: Sodium Citrate
Phase 4

Detailed Description

Standard heparin or citrate is routinely used as a method of anticoagulation in plasmapheresis. Citrate provides effective anticoagulation that is completely limited to extracorporeal circulation. Patients who are at increased risk for bleeding, anticoagulation with citrate is a more appropriate method than standard heparin, while in other patients both methods are equivalent.

Citrate anticoagulation is performed by infusing citrate into the arterial line of the extracorporeal system. Citrate binds to plasma calcium and thus inhibits coagulation in the system. Calcium is added to the venous line of the system (when blood returns to the patient) to maintain a normal plasma ionized calcium concentration. Lowering the ionized calcium in the blood in the extracorporeal circulation inhibits the coagulation and activation of other systems (platelets, leukocytes, complement), which affects the biocompatibility of the artificial material and the whole procedure. Biocompatibility is extremely important, since the contact of blood with artificial material activates both the humoral and cellular systems. As part of the humoral immune system, complement is activated by the production of C3, C4 and C5, factor XIIa, there is also an increase in the production of bradykinin, kallikrein, quinine and plasmin, and some proteins are denatured (gamma globulins, fibrinogen, albumins). When the cellular immune system is activated, lymphocytosis can occur and the is also change in function of phagocytes.

All previous studies show that regional anticoagulation with citrate improves biocompatibility in hemodialysis procedures (compared to heparin anticoagulation), but no direct comparison in plasmapheresis has been observed in the literature so far.

Therefore, the investigators want to conduct a prospective randomized study comparing several parameters of heparin and citrate anticoagulation biocompatibility during plasmapheresis. The aim of the study is to demonstrate better biocompatibility in citrate anticoagulation compared to heparin.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
15 participants
Allocation:
Randomized
Intervention Model:
Crossover Assignment
Masking:
None (Open Label)
Primary Purpose:
Treatment
Official Title:
Comparison of Biocompatibility of Plasmapheresis Procedures With Citrate and Heparin Anticoagulation
Actual Study Start Date :
Jan 21, 2022
Anticipated Primary Completion Date :
Sep 30, 2022
Anticipated Study Completion Date :
Dec 30, 2022

Arms and Interventions

Arm Intervention/Treatment
Active Comparator: heparin anticoagulation

standard heparin anticoagulation during plasmapheresis

Drug: unfractionated heparin
standard heparin at 2500 IU i.v. bolus and then 2000 IU/h continuously i.v. for anticoagulation during plasmapheresis

Experimental: citrate anticoagulation

sodium citrate anticoagulation during plasmapheresis

Drug: Sodium Citrate
8% sodium citrate at approx. 27 mmol/h i.v. for anticoagulation during plasmapheresis

Outcome Measures

Primary Outcome Measures

  1. change in serum thrombin-antithrombin complex from baseline to 30 minutes [30 minutes after start of plasmapheresis]

    thrombin-antithrombin complex

  2. change in serum thrombin-antithrombin complex from baseline to the end of plasmapheresis [at the end of plasmapheresis procedure]

    thrombin-antithrombin complex

  3. change in serum platelet factor 4 from baseline to 30 minutes [30 minutes after start of plasmapheresis]

    platelet factor 4

  4. change in serum platelet factor 4 from baseline to the end of plasmapheresis [at the end of plasmapheresis procedure]

    platelet factor 4

  5. change in serum C5a from baseline to 30 minutes [30 minutes after start of plasmapheresis]

    complement component C5a

  6. change in serum C5a from baseline to the end of plasmapheresis [at the end of plasmapheresis procedure]

    complement component C5a

  7. change in serum myeloperoxidase from baseline to 30 minutes [30 minutes after start of plasmapheresis]

    myeloperoxidase

  8. change in serum myeloperoxidase from baseline to the end of plasmapheresis [at the end of plasmapheresis procedure]

    myeloperoxidase

Secondary Outcome Measures

  1. complications during plasmapheresis (hypocalcemia, metabolic alkalosis, clotting) [during plasmapheresis]

    complications during plasmapheresis (hypocalcemia, metabolic alkalosis, clotting)

  2. comparison of measured platelet factor 4 in patients' serum and filtered plasma [30 minutes after start of plasmapheresis]

    A Bland-Altman agreement analysis

  3. comparison of measured thrombin-antithrombin complex in patients' serum and filtered plasma [30 minutes after start of plasmapheresis]

    A Bland-Altman agreement analysis

  4. comparison of measured C5a in patients' serum and filtered plasma [30 minutes after start of plasmapheresis]

    A Bland-Altman agreement analysis

  5. comparison of measured myeloperoxidase in patients' serum and filtered plasma [30 minutes after start of plasmapheresis]

    A Bland-Altman agreement analysis

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years and Older
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
No
Inclusion Criteria:
  • older than 18 years

  • an indication for plasma exchange (plasmapheresis) with albumin solution as a replacement solution

Exclusion Criteria:
  • contraindication for systemic heparinisation

  • acute bleeding

  • known active malignancy

  • severe infection

  • anticoagulant therapy at therapeutic dose

Contacts and Locations

Locations

Site City State Country Postal Code
1 University Medical Center Ljubljana Ljubljana Slovenia 1210

Sponsors and Collaborators

  • University Medical Centre Ljubljana

Investigators

None specified.

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
Jakob Gubensek, Principal investigator, University Medical Centre Ljubljana
ClinicalTrials.gov Identifier:
NCT05191290
Other Study ID Numbers:
  • 0120-310/2017/3
First Posted:
Jan 13, 2022
Last Update Posted:
Feb 3, 2022
Last Verified:
Jan 1, 2022
Individual Participant Data (IPD) Sharing Statement:
No
Plan to Share IPD:
No
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Additional relevant MeSH terms:

Study Results

No Results Posted as of Feb 3, 2022