SUPPORT: Preoperative vs Postoperative Hypofractionated Radiosurgery for Patients With Large Brain Metastases

Sponsor
Istituto Clinico Humanitas (Other)
Overall Status
Not yet recruiting
CT.gov ID
NCT05545007
Collaborator
Brainlab (Other)
170
2
36

Study Details

Study Description

Brief Summary

This is a phase III randomized trial with the aim to compare preoperative HSRS to postoperative HSRS in patients with large at least one BMs from solid tumors suitable for surgical resection.

Condition or Disease Intervention/Treatment Phase
  • Radiation: Hypofractionated Radiosurgery (HSRS)
  • Procedure: Brain metastases surgical resection
N/A

Detailed Description

The occurrence of BMs is a huge and challenging issue affecting about 20-40% of patients with solid primary tumors. Among these, about 25% of patients harbored large BMs, defined as ≥ 2.1 cm. Single dose SRS, using the dose guidelines suggested by the Radiation Therapy Oncology Group (RTOG) 90-05 study, obtains an unsatisfactory local control (LC) rate ranging from 45-49%. In this subset of patients other treatment pathways have been investigated. In the 1990s, Patchell and colleagues determined that patients with good functional status, and solitary intracranial metastases should undergo surgical resection. Unfortunately, surgery alone is able to control tumor in only 50% of patients, and an adjuvant radiation therapy (RT) is required. For several years, adjuvant whole brain radiation therapy (WBRT) has been considered the standard of cure, but a high risk of impairment in neurological functions was recorded, without an actual benefit on survival. Different RT approaches have been inquired with the aim to reduce neurological toxicity preserving the same brain tumor control. Recent randomized trials showed that single dose SRS on the tumor bed might be a valid, and less toxic alternative to WBRT, although an increased risk of radio necrosis (RN) was noticed when large surgical cavities are treated. In the last years hypofractionated stereotactic radiosurgery (HSRS) has gained interest. Its goal is to reduce the risk of RN compared to single dose SRS, while providing similar, or perhaps, improved LC, probably in relation to the need of reducing the dose prescribed in cases of larger lesions using SRS.

However, there has been increasing evidence that patients treated with postoperative SRS have an increased rates of leptomeningeal disease (LMD) occurrence than what was observed when postoperative WBRT was used as the standard. Several retrospective studies have demonstrated a LMD rates up to 31% in the postoperative SRS setting.

The proposed mechanism of this increased risk is iatrogenic tumor dissemination into the cerebrospinal fluid (CSF) at the time of surgical resection, which was not as apparent when the entire intracranial CSF space was treated with routine postoperative WBRT, but has become more apparent with increasing use of postoperative SRS only. It is important to note that a standardized definition of radiographic LMD does not exist and ascertainment bias as to what constitutes radiographic LMD (vs local or distant meningeal failure as an example) is an unresolved issue.

Due to the perceived drawbacks of postoperative SRS, namely the need for cavity margin expansion due to target delineation uncertainty, the variable postoperative clinical course and potential delay in administering postoperative SRS, and the theoretical risk of tumor spillage into CSF at the time of surgery, investigators began to study the use of preoperative SRS as an alternative paradigm to maximize local control of the resection cavity and minimize neurocognitive detriment associated with WBRT. Preoperative SRS has several potential advantages compared to postoperative SRS consisting in :

  • a better target delineation to an intact lesion

  • the reduction of normal brain irradiated considering the useless of additional margins

  • the potential prevention of any cells spilled during resection

  • a greater oxygenation ratio of the intact region

  • a sterilization effect

  • the resection of the majority of irradiated tissues Based on this background we designed this phase III randomized trial comparing preoperative HSRS to postoperative HSRS in patients with large at least one BMs from solid tumors suitable for surgical resection.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
170 participants
Allocation:
Randomized
Intervention Model:
Parallel Assignment
Masking:
None (Open Label)
Primary Purpose:
Treatment
Official Title:
Phase III Randomized Trial Comparing Preoperative Hypofractionated Radiosurgery (HSRS) to Postoperative Hypofractionated Radiosurgery (HSRS) for Patients With Large Brain Metastases (= 2.1cm) Suitable for Surgical Resection
Anticipated Study Start Date :
Nov 1, 2022
Anticipated Primary Completion Date :
Nov 1, 2025
Anticipated Study Completion Date :
Nov 1, 2025

Arms and Interventions

Arm Intervention/Treatment
Experimental: HSRS pre-operative

Patients undergo HSRS (hypofractionated Radiosurgery) on day 1, consisting in 27 Gray (gy) administered in 3 daily fractions. Within 1 weeks, patients undergo surgical resection.

Radiation: Hypofractionated Radiosurgery (HSRS)
HSRS converges multiple radiation beams to deliver a single, large dose of radiation to a discrete tumor target with high precision, thereby minimizing radiation dose to the surrounding normal tissue.

Procedure: Brain metastases surgical resection
Complete surgical resection of brain lesions with adeguate margins.

Active Comparator: HSRS post-operative

Patients undergo surgical resection on day 1. Within 4-6 weeks, patients undergo HSRS (hypofractionated Radiosurgery), consisting in 27 Gray (gy) administered in 3 daily fractions.

Radiation: Hypofractionated Radiosurgery (HSRS)
HSRS converges multiple radiation beams to deliver a single, large dose of radiation to a discrete tumor target with high precision, thereby minimizing radiation dose to the surrounding normal tissue.

Procedure: Brain metastases surgical resection
Complete surgical resection of brain lesions with adeguate margins.

Outcome Measures

Primary Outcome Measures

  1. Rate of LMD (leptomeningeal disease) occurrence [1 year]

    Rate of LMD occurrence in patients who receive HSRS prior to surgery as compared to patients who receive HSRS after surgery. This assessment will be evaluated through radiological images.

Secondary Outcome Measures

  1. Rate of local recurrence [1 year]

    To evaluate for patients undergone pre-operative as compared to post-operative HSRS whether there is a decreased rate of local recurrence. This assessment will be evaluated through radiological images.

  2. Rate of brain distant progression [1 year]

    To evaluate for patients undergone pre-operative as compared to post-operative HSRS whether there is a decreased rate of brain distant progression. This assessment will be evaluated through radiological images.

  3. Overall Survival [1 year]

    To evaluate for patients with brain metastases whether there is improved overall survival for patients who receive HSRS prior to surgery as compared to patients who receive HSRS after surgery.

  4. Radiation Necrosis Evaluation [1 year]

    To evaluate for patients undergone pre-operative as compared to post-operative HSRS whether there is a decreased rate of symptomatic radiation necrosis (RN). RN will be evaluated through radiological images.

  5. Rate of surgical Morbidity [1 year]

    To evaluate whether preoperative SRS increases rates of surgical morbidity including postoperative complications such as wound infection, need for longer hospital stays, readmission and eventual delay of systemic treatments

  6. Quality of Life and neurocognitive functions evaluation [1 year]

    To evaluate quality of life and neurocognitive functions throught specific questionnaires administered to patients

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years and Older
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
No
Inclusion Criteria:
  • Age >18 years

  • Histological or cytological confirmation of solid tumor malignancy

  • Clinical indication for surgical resection of one brain metastasis

  • Karnosky performance status (KPS) ≥70

  • Controlled or responsive extra cranial metastatic lesions

  • Limited brain metastases (1-4 BMs)

  • Single metastatic lesion ≥ 2.1 cm in maximum diameter (4 cm3)

  • Lesions ≤2 cm conditioning mass effect or neurological deficits or massive edema unresponsive to steroids

  • Written informed consent form

Exclusion Criteria:
  • Prior WBRT

  • KPS < 70

  • Diagnosis of small cell lung cancer (SCLC), germinal cell tumour or Lymphoproliferative disease

  • Pregnant women

  • Prior open neurosurgery for malignancy

  • More than 4 brain metastases

  • Patients with incompatibility to perform MRI

Contacts and Locations

Locations

No locations specified.

Sponsors and Collaborators

  • Istituto Clinico Humanitas
  • Brainlab

Investigators

None specified.

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
Istituto Clinico Humanitas
ClinicalTrials.gov Identifier:
NCT05545007
Other Study ID Numbers:
  • SUPPORT trial
First Posted:
Sep 19, 2022
Last Update Posted:
Sep 19, 2022
Last Verified:
Sep 1, 2022
Individual Participant Data (IPD) Sharing Statement:
Yes
Plan to Share IPD:
Yes
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Keywords provided by Istituto Clinico Humanitas
Additional relevant MeSH terms:

Study Results

No Results Posted as of Sep 19, 2022