Deep Learning Assisted Epithelial Basement Membrane Dystrophy Detection

Sponsor
Vienna Institute for Research in Ocular Surgery (Other)
Overall Status
Recruiting
CT.gov ID
NCT05770492
Collaborator
(none)
100
1
12
8.3

Study Details

Study Description

Brief Summary

Epithelial basement membrane dystrophy, also known as Map-Dot fingerprint dystrophy or Cogan microcystic dystrophy, is a common bilateral dystrophy of the anterior human cornea. According to one study, it affects approximately 2% of the human population. A more recent study even reported basement membrane changes in 25% of the general population. However, due to its clinical and morphological appearance, the disease is probably often overlooked.

Although epithelial basement membrane dystrophy is asymptomatic in many affected patients, there are some important clinical consequences of the disease to consider: Dystrophy is estimated to be the second most common cause of recurrent corneal erosion syndrome and is also an important differential diagnosis of dry eye disease. Therefore, it can cause severe pain in affected patients. In addition, epithelial basement membrane dystrophy plays an important role in the context of cataract surgery, one of the most commonly performed surgeries worldwide: besides the importance of appropriate disease management before surgery to prevent postoperative exacerbation of ocular surface symptoms, epithelial basement membrane dystrophy is also a risk factor for inaccurate preoperative biometry.

In recent years, specific features of epithelial basement membrane dystrophy have been introduced in examination methods other than slit-lamp biomicroscopy, such as epithelial thickness mapping or optical coherence tomography. Due to the recent introduction of a variety of deep learning systems, the application of machine learning could significantly increase the detection rate for epithelial basement membrane dystrophy. Furthermore, to the best of our knowledge, the change in disease characteristics over time is currently unknown.

Therefore, the first part of this study will investigate the ability of an automated deep learning system using optical coherence tomography scans to distinguish between normal human corneas and corneas affected by epithelial basement membrane dystrophy. For this purpose, 100 eyes of 50 patients will be included in both study groups. In an optional 2nd part of the study, a second visit will be planned in patients with epithelial basement membrane dystrophy to investigate the reproducibility of disease characteristics as a secondary outcome.

Condition or Disease Intervention/Treatment Phase
  • Diagnostic Test: anterior segment optical coherence tomography

Detailed Description

This study aims to investigate the capability of an automated deep learning system using anterior segment optical coherence tomography scans to distinguish between normal human corneas and corneas affected by epithelial basement membrane dystrophy. In an optional substudy, a second visit will be scheduled to investigate the reproducibility of disease characteristics as a secondary outcome.

One-hundred eyes of 50 patients with epithelial basement membrane dystrophy and 100 eyes of 50 healthy subjects will be included in this study. After successful screening, all study participants will undergo one single study visit. During this visit, two questionnaires (Ocular Surface Disease Index, Quality of Vision), two different anterior segment optical coherence tomography devices (MS-39, Anterion), a slit lamp examination including slit lamp photography will be performed.

In an optional substudy, patients with epithelial basement membrane dystrophy will have a second visit, to compare the variability of disease characteristics, including number of maps, dots, fingerprint lines and cysts between the two visits.

Study Design

Study Type:
Observational
Anticipated Enrollment :
100 participants
Observational Model:
Case-Control
Time Perspective:
Prospective
Official Title:
Automated Deep Learning for Detection of Epithelial Basement Membrane Dystrophy Using Optical Coherence Tomography and Longitudinal Reproducibility of Disease Characteristics
Actual Study Start Date :
Feb 27, 2023
Anticipated Primary Completion Date :
Feb 27, 2024
Anticipated Study Completion Date :
Feb 27, 2024

Arms and Interventions

Arm Intervention/Treatment
Epithelial Basement Membrane Dystrophy

Patients with epithelial basement membrane dystrophy

Diagnostic Test: anterior segment optical coherence tomography
Two different optical systems (MS-39, Costruzione Strumenti Oftalmici Italy; Anterion optical coherence tomographer, Heidelberg Engineering) will be used for acquisition of cross-sectional scans. Radial scan patterns will be used for acquisition.

Healthy

Patients/Subjects without corneal pathologies

Diagnostic Test: anterior segment optical coherence tomography
Two different optical systems (MS-39, Costruzione Strumenti Oftalmici Italy; Anterion optical coherence tomographer, Heidelberg Engineering) will be used for acquisition of cross-sectional scans. Radial scan patterns will be used for acquisition.

Outcome Measures

Primary Outcome Measures

  1. Sensitivity of the deep learning system to detect optical coherence tomography scans with epithelial basement membrane dystrophy on the final test data set [1 day]

  2. Specificity of the deep learning system to detect optical coherence tomography scans with epithelial basement membrane dystrophy on the final test data set [1 day]

  3. Area under the curve of the deep learning algorithm on the final test data set [1 day]

Secondary Outcome Measures

  1. Interobserver variability regarding disease diagnosis (normal cornea vs. epithelial basement membrane dystrophy) according to slit lamp photographies [1 day]

  2. Interobserver variability regarding number of maps according to slit lamp photographies [1 day]

  3. Interobserver variability regarding number of dots according to slit lamp photographies [1 day]

  4. Interobserver variability regarding number of fingerprints according to slit lamp photographies [1 day]

  5. Interobserver variability regarding number of cysts according to slit lamp photographies [1 day]

  6. Difference in epithelial thickness mapping between healthy corneas and corneas affected by epithelial basement membrane dystrophy [1 day]

  7. Difference in Ocular Surface Disease Index between healthy subjects and patients affected by epithelial basement membrane dystrophy [1 day]

    minimum: 0, maximum: 100, higher scores are associated with increased symptoms regarding ocular surface disease

  8. Difference in Quality of Vision questionnaire score between healthy subjects and patients affected by epithelial basement membrane dystrophy [1 day]

    0- to 100-unit linear scale, higher scores indicating poorer quality of vision

  9. Sub-study only: Reproducibility of number of maps between visit 1 and visit 2 according to slit lamp photographies and optical coherence tomography images [3 months]

    number of corneal maps will be assessed by a clinical investigator at both visits

  10. Sub-study only: Reproducibility of number of dots between visit 1 and visit 2 according to slit lamp photographies and optical coherence tomography images [3 months]

    number of corneal dots will be assessed by a clinical investigator at both visits

  11. Sub-study only: Reproducibility of number of fingerprints between visit 1 and visit 2 according to slit lamp photographies and optical coherence tomography images [3 months]

    number of corneal fingerprint lines will be assessed by a clinical investigator at both visits

  12. Sub-study only: Reproducibility of number of cysts between visit 1 and visit 2 according to slit lamp photographies and optical coherence tomography images [3 months]

    number of corneal cysts will be assessed by a clinical investigator at both visits

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years and Older
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
Yes
Inclusion Criteria (Group 1):
  • Age 18 or older

  • Written informed consent

  • Presence of epithelial basement membrane dystrophy

Inclusion Criteria (Group 2):
  • Age 18 or older

  • Written informed consent

  • No corneal pathology in both eyes

Exclusion Criteria:
  • Other corneal conditions (such as corneal scarring, fuchs endothelial corneal dystrophy, etc.)

  • Pregnancy (pregnancy test will be taken in women of reproductive age), nursing women

Contacts and Locations

Locations

Site City State Country Postal Code
1 Vienna Institute for Research in Ocular Surgery (VIROS) Vienna Austria 1140

Sponsors and Collaborators

  • Vienna Institute for Research in Ocular Surgery

Investigators

None specified.

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
Prim. Prof. Dr. Oliver Findl, MBA, Head of Ophthalmology Department, Vienna Institute for Research in Ocular Surgery
ClinicalTrials.gov Identifier:
NCT05770492
Other Study ID Numbers:
  • DL_EBMD
First Posted:
Mar 15, 2023
Last Update Posted:
Mar 15, 2023
Last Verified:
Mar 1, 2023
Individual Participant Data (IPD) Sharing Statement:
Undecided
Plan to Share IPD:
Undecided
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Additional relevant MeSH terms:

Study Results

No Results Posted as of Mar 15, 2023