Infrared Camera for Brain Mapping During Surgery

Sponsor
National Institute of Neurological Disorders and Stroke (NINDS) (NIH)
Overall Status
Completed
CT.gov ID
NCT00001554
Collaborator
(none)
80
1
48
1.7

Study Details

Study Description

Brief Summary

It is extremely important to identify and distinguish healthy brain tissue from diseased brain tissue during neurosurgery. If normal tissue is damaged during neurosurgery it can result in long term neurological problems for the patient.

The brain tissue as it appears prior to the operation on CT scan and MRI is occasionally very different from how it appears during the actual operation. Therefore, it is necessary to develop diagnostic procedures that can be used during the operation

Presently, the techniques used for intraoperative mapping of the brain are not reliable in all cases in which they are used. Researchers in this study have developed a new approach that may allow diseased brain tissue to be located during an operation with little risk. This new approach uses nfrared technology to locate the diseased tissue and identify healthy brain tissue.

The goal of this study is to investigate the clinical use of intraoperative infrared (IR) neuroimaging to locate diseased tissue and distinguish it from normal functioning tissue during the operation.

Condition or Disease Intervention/Treatment Phase
  • Device: intraoperative infrared (IR) neuroimaging
Phase 1

Detailed Description

It is important during neurosurgical procedures to identify and preserve eloquent functional cortex adjacent to a resectable lesion. Resection of a lesion infiltrating vital cerebral cortex can be associated with postoperative neurological deficits if the surgeon cannot clearly distinguish between the infiltrating borders of a lesion and surrounding functionally eloquent tissue. Spatial relationships between a lesion and surrounding normal brain can change significantly from those determined by preoperative methods such as CT and MRI scans. Necessary intraoperative interventions such as cerebrospinal fluid drainage, osmotic diuresis and lesion debulking cause quantitatively unpredictable brain shift in three dimensions. Therefore functional localization in real time that can be performed in the operating room is desirable. However, intraoperative real-time functional mapping techniques now available cannot be used in many surgical situations and are not sufficiently reliable in all cases in which they are used.

We have developed an intraoperative approach that may permit reliable lesion localization and brain functional mapping in real time with minimal risk. This approach makes use of infrared technology to identify functionally active eloquent cortex and may differentiate abnormal tissue from normal cortex.

The goal of this study is to investigate the clinical use of intraoperative infrared (IR) neuroimaging to differentiate intracranial lesions from surrounding normal functionally important tissue in real time. Reliable real-time intraoperative functional mapping of eloquent cortex adjacent to lesions by this technique would improve the safety and effectiveness of many neurosurgical procedures.

Study Design

Study Type:
Interventional
Primary Purpose:
Treatment
Official Title:
Intraoperative Infrared Functional Brain Mapping
Study Start Date :
Jun 1, 1996
Study Completion Date :
Jun 1, 2000

Outcome Measures

Primary Outcome Measures

    Eligibility Criteria

    Criteria

    Ages Eligible for Study:
    N/A and Older
    Sexes Eligible for Study:
    All
    Accepts Healthy Volunteers:
    No

    Adult patients who will be undergoing craniotomy for lesions such as tumor, epileptic focus, vascular malformation or infection.

    Adult patients who are able to provide informed consent.

    Contacts and Locations

    Locations

    Site City State Country Postal Code
    1 National Institute of Neurological Disorders and Stroke (NINDS) Bethesda Maryland United States 20892

    Sponsors and Collaborators

    • National Institute of Neurological Disorders and Stroke (NINDS)

    Investigators

    None specified.

    Study Documents (Full-Text)

    None provided.

    More Information

    Publications

    Responsible Party:
    , ,
    ClinicalTrials.gov Identifier:
    NCT00001554
    Other Study ID Numbers:
    • 960093
    • 96-N-0093
    First Posted:
    Dec 10, 2002
    Last Update Posted:
    Mar 4, 2008
    Last Verified:
    May 1, 1999
    Keywords provided by , ,
    Additional relevant MeSH terms:

    Study Results

    No Results Posted as of Mar 4, 2008