ETRec: Recovery Following Acute Endurance Training

Sponsor
University of Thessaly (Other)
Overall Status
Recruiting
CT.gov ID
NCT06043492
Collaborator
(none)
10
1
3
2
5

Study Details

Study Description

Brief Summary

Aerobic capacity is critical for many athletes, especially for endurance athletes. Althgough several training methods are implemented by coaches to improve endurance performance, recovery following acute endurance training is not adequately studied. However, such information is crucial for coaches to effectively design the most favorable training program, to avoid muscle injuries and overtraining, and ultimately to improve performance of their athletes. This study aims to examine the acute effect of different continuous and HIIT training protocols on indices of metabolism, EIMD, neuromuscular fatigue and performance in middle- and long-distance runners.

Condition or Disease Intervention/Treatment Phase
  • Other: High Intensity Interval Training
  • Other: Coninuous Running
  • Other: Control Trial
N/A

Detailed Description

Aerobic capacity is critical for many athletes, especially for endurance athletes. Endurance training leads to cardiopulmonary and musculoskeletal adaptations, which in turn lead to improvement of endurance performance. Several training methods have been established for the improvement of aerobic capacity and performance, including long distance and low speed training, and high intensity interval training (HIIT). Training methods are used depending on the kind of endurance that aim to improve, and the specific characteristics and energy demands of the event. Especially regarding middle- and long-distance runners, the energy comes mainly from the oxidative system, however, the contribution of the glycolytic pathway is equally important. Thus, improvement mainly of the low-intensity endurance, but also high-intensity endurance is important for these athletes. Additionally, both continuous endurance and HIIT are effective training methods for improving cardiorespiratory and metabolic function, and athletic performance, while evidence also exists in favor of HIIT being more effective. Thus both training methods are used by coaches to improve aerobic capacity and performance of their athletes.

Coaches should be careful regarding the frequency of HIIT training during a microcycle, to provide adequate recovery between training sessions to avoid muscle injuries and overtraining. Existing evidence suggests that endurance exercise (continuous or HIIT) may result in exercise-induced muscle damage (EIMD), inflammatory responses, oxidative stress, and performance deterioration, yet, the timeframe of recovery of physiological and biochemical indices following different endurance training protocols has not been adequately studied. However, such information is crucial for coaches to effectively design the most favorable training program for their athletes.

This study aims to examine the acute effect of different continuous and HIIT training protocols on indices of metabolism, EIMD, neuromuscular fatigue and performance in middle- and long-distance runners.

According to a preliminary power analysis (a probability error of 0.05, and a statistical power of 80%), a sample size of 8 subjects per group was considered appropriate in order to detect statistically meaningful changes between groups. Thus, 10 men and female middle- and long-distance runners, will participate in the study.

The study will be performed in a randomized, cross over, repeated measures design. During their first 1st and 2nd visit, all participants will sign an informed consent form after they will be informed about all the benefits and risks of the study and they will fill in and sign a medical history questionnaire. Fasting blood samples will be collected in order to estimate muscle damage concentration markers. Participants will be instructed by a dietitian how to record a 7-days diet recalls to ensure that they do not consume to greater extent nutrients that may affect EIMD and fatigue (e.g. antioxidants, amino acids, etc.) and to ensure that the energy intake during the trials will be the same. Assessment of body mass and body height, body composition, and aerobic capacity (VO2max), will be performed. Using a photocells system, countermovement jump will be performed to assess jump height, and 30 sec Bosco test to assess mean jump height, peak power, mean power, and fatigue index. The peak concentric, eccentric and isometric isokinetic torque of the knee flexors and extensors, in both limbs will be evaluated on an isokinetic dynamometer at 60°/sec. Maximal voluntary isometric contraction (MVIC) of the knee extensors at 65o in both limbs, as well as the fatigue rate during MVIC through the percent drop of peak torque between the first and the last three seconds of a 10-sec MVIC, will also be evaluated. Afterwards, participants will be randomly assigned into, and perform one of the three different conditions of the study design: a) Continuous running (CT) for 40 min at lactic threshold, b) High intensity interval training (HIIT): 10x2min running at vVO2max with active recovery at 40% της VO2max (interval:recovery 1:1) with a load of 10% of body weight (BW), and c) control condition, no training (measurements only). The training protocols will be matched for mean power and total duration (Tschakert and Hofmann 2013). Prior and immediately after each experimental trial, delayed onset of muscle soreness (DOMS) in the knee flexors (KF) and extensors (KE) of both limbs, as well as blood lactate will be assessed. Additionally, DOMS of KF and KE, peak concentric, eccentric and isometric isokinetic torque, CMJ height, as well as mean jump height, peak power, mean power, and fatigue index during a 30 sec Bosco test, will be assessed 24h, 48h and 72h after the end of the trial. MVIC of the knee extensors of both limbs, as well as the fatigue rate during MVIC will also be assessed at 1h, 2h and 3h, as well as 24h, 48h, and 72h after the end of the trial. Creatine kinase will be assessed at 24h, 48h, and 72h after the end of the trial. The exact above procedures will be repeated by the participants during the remaining two experimental trials. A 2-weeks wash-out period will be implemented between trials.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
10 participants
Allocation:
Randomized
Intervention Model:
Crossover Assignment
Intervention Model Description:
The same participants will participate in three different conditionsThe same participants will participate in three different conditions
Masking:
None (Open Label)
Primary Purpose:
Screening
Official Title:
Recovery Following Different Endurance Training Protocols in Middle- and Long-Distance Runners
Anticipated Study Start Date :
Sep 30, 2023
Anticipated Primary Completion Date :
Nov 30, 2023
Anticipated Study Completion Date :
Nov 30, 2023

Arms and Interventions

Arm Intervention/Treatment
Experimental: High Intensity Interval Training

The participants will perform an acute bout of high intensity interval training

Other: High Intensity Interval Training
10 x 2 min running at vVO2max, interspersed by 2 min recovery at 40% VO2max

Experimental: Coninuous Running

The participants will perform an acute bout of continuous running

Other: Coninuous Running
40 min continuous running at lactate threshold

Other: Control Trial

The participants will not perform any endurance exercise protocol

Other: Control Trial
The participants will perform only the baseline and post acute-training evaluations, without performing exercise

Outcome Measures

Primary Outcome Measures

  1. Changes in Creatine kinase (CK) [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    CK will be measured in plasma using a Clinical Chemistry Analyzer with commercially available kits.

  2. Changes in DOMS [Baseline (pre), post-, 24 hours post-, 48 hours post-, 72 hours post-trial]

    DOMS of knee extensors and knee flexors of both lower extremities will be measured during palpation of the muscle belly and the distal region after performing three repetitions of a full squat.

  3. Changes in blood lactate [Baseline (pre), 4 minutes post-trial]

    Lactate will be measured in capillary blood with a hand-portable analyzer.

  4. Changes in squat jump height [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Squat jump height will be measured with a photocells system.

  5. Changes in mean jump height during a 30 sec Bosco test [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Mean jump height will be measured with a photocells system.

  6. Changes in peak power during a 30 sec Bosco test [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Peak power will be measured with a photocells system.

  7. Changes in mean power during a 30 sec Bosco test [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Mean power will be measured with a photocells system.

  8. Changes in fatigue rate during a 30 sec Bosco test [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Fatigue rate will be estimated through the persent drop in mean jump height between the first 5 jumps and the last 5 jumps.

  9. Changes in maximal voluntary isometric contraction (MVIC) [Baseline (pre), 1 hour post-, 2 hours post-, 3 hours post-, 24 hours post-, 48 hours post-, 72 hours post-trial]

    MVIC of the knee extensors and knee flexors will be measured on an isokinetic dynamometer.

  10. Changes in peak concentric torque [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Concentric torque of the knee extensors and knee flexors will be measured on an isokinetic dynamometer.

  11. Changes in peak eccentric torque [Baseline (pre), 24 hours post-, 48 hours post-, 72 hours post-trial]

    Eccentric torque of the knee extensors and knee flexors will be measured on an isokinetic dynamometer.

Secondary Outcome Measures

  1. Body weight [Baseline]

    Body weight will be measured on a beam balance with stadiometer.

  2. Body height [Baseline]

    Body height will be measured on a beam balance with stadiometer.

  3. Body mass index (BMI) [Baseline]

    BMI will be calculated from the ratio of body mass/ body height squared.

  4. Body fat [Baseline]

    Body fat will be measured by using Dual-emission X-ray absorptiometry.

  5. Lean body mass [Baseline]

    Lean body mass will be measured by using Dual-emission X-ray absorptiometry.

  6. Dietary intake [Baseline]

    Dietary intake will be assessed using 7-day diet recalls.

  7. Maximal oxygen consumption (VO2max) [Baseline]

    VO2max will be measured by open circuit spirometry via breath by breath method during a graded treadmill running protocol.

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years to 40 Years
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
Yes
Inclusion Criteria:
  • Middle- and long-distance runners

  • Absence of musculoskeletal injuries (≥ 6 months)

  • No use of drugs or ergogenic supplements (≥ 1 month)

  • Absense from eccentric exercise (≥ 3 days)

  • No alcohol or ergogenic drinks consumption before each training protocol

Exclusion Criteria:
  • Musculoskeletal injury (< 6 months)

  • Use of drugs or ergogenic supplements (< 1 month)

  • Participation in eccentric exercise (< 3 days)

  • Alcohol or ergogenic drinks consumption before the training protocol

Contacts and Locations

Locations

Site City State Country Postal Code
1 Department of Physical Education and Sport Science, Uninersity of Thessaly Trikala Thessaly Greece 42100

Sponsors and Collaborators

  • University of Thessaly

Investigators

  • Principal Investigator: Chariklia K Deli, PhD, University of Thessaly

Study Documents (Full-Text)

None provided.

More Information

Publications

Responsible Party:
Chariklia K. Deli, Assistant Professor, University of Thessaly
ClinicalTrials.gov Identifier:
NCT06043492
Other Study ID Numbers:
  • Endurance Training - Recovery
First Posted:
Sep 21, 2023
Last Update Posted:
Sep 21, 2023
Last Verified:
Sep 1, 2023
Individual Participant Data (IPD) Sharing Statement:
No
Plan to Share IPD:
No
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No

Study Results

No Results Posted as of Sep 21, 2023