Improved Muscle Metabolism by Combination of Muscle Activation and Protein Substitution ( IMEMPRO )

Sponsor
Technical University of Munich (Other)
Overall Status
Recruiting
CT.gov ID
NCT05919940
Collaborator
Fresenius Kabi (Industry), University Medicine Greifswald (Other), Berlin Institute of Health (Other)
40
2
2
18.7
20
1.1

Study Details

Study Description

Brief Summary

Intensive Care Unit Acquired Weakness (ICUAW) describes muscle weakness that occurs in around 40% of patients during an intensive care stay. The morbidity and mortality of these patients is significantly increased over a 5-year period. The aim of this study is to investigate the combined effect of early enteral high-protein nutrition and early muscle activation on muscle atrophy in critically ill patients.

The study will include 40 patients (20 intervention, 20 observation) with requirement for enteral nutrition at time of inclusion. In the intervention group the maximum possible level of mobilization is carried out and muscles are activated twice a day using neuromuscular electrical stimulation (NMES). The nutrition plan of the intervention group is based on the applicable guidelines for intensive care medicine with exception of increased protein intake. The control group receives therapy without deviating from the standard according of the DGEM guideline.

The study aims to show that the decrease in muscle mass is significantly less than in the control group (primary hypothesis) via ultrasound of the rectus femoris muscle and in case of given consent muscle biopsy. As secondary hypothesis it is examined whether the combination of early high protein intake and muscle activation improves muscle strength and endurance.

Condition or Disease Intervention/Treatment Phase
  • Dietary Supplement: Dietary Supplement: additional substitution of protein
  • Device: Neuromuscular electrical stimulation
  • Other: Early Mobilization
N/A

Detailed Description

Intensive Care Unit Acquired Weakness (ICUAW) describes the clinically diagnosed manifestation of a neuromuscular organ dysfunction. It develops in approximately 40% of all intensive care unit patients amounting to at least 1.2 million patients annually in Germany. All these patients face a broad range of sequeleae and an increased mortality up to 5 years after ICU discharge. A characteristic pathophysiological phenomenon is an early severe muscle atrophy reaching 10% during the first days after ICU admission.

The current preventative and therapeutic approach for ICUAW is a combination of targeted risk factor management as well as early activation of muscles, i.e. neuromuscular electrical stimulation (NMES) and early mobilization as they have been shown to counteract the muscle atrophy and mediate different outcome benefits such as shorter ICU stay.

Nutrition is a key element of our daily life. Protein intake has been shown to affect lean mass and muscle mass. Research into specific nutritional strategies to treat or prevent ICUAW are scarce and the combination with early muscle activation has not been adequately explored.

The study will include 40 patients (20 intervention, 20 observation) who were admitted to an intensive care unit within the last 48 hours. A basic requirement for inclusion is an indication for enteral (via the gastrointestinal tract) nutrition at time of inclusion. In the intervention group, the ability to mobilize is assessed daily and the maximum possible level of mobilization is carried out and additional muscles are activated twice a day using neuromuscular electrical stimulation (NMES). The nutrition plan of the intervention group is based on the applicable guidelines for intensive care medicine. In this study, protein intake is increased in the interventional group. The control group receives therapy without deviating from the standard according to the SOP and DGEM guideline: "Clinical nutrition in intensive care medicine" 2018.

The study aims to show that the decrease in muscle mass is significantly less than in the control group (primary hypothesis) via ultrasound of the rectus femoris muscle and muscle biopsy. As a second hypothesis it is examined whether the combination of early high protein intake and muscle activation improves muscle strength and endurance compared to the control group.

Further exploratory analyses will investigate changes in the skeletal muscle glycogen content, skeletal muscle histology, skeletal muscle gene expression, skeletal muscle protein level, as well as metabolomic changes in blood and urine.

An additional blood sample will be taken after 90 days as part of a follow-up.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
40 participants
Allocation:
Randomized
Intervention Model:
Parallel Assignment
Masking:
Single (Outcomes Assessor)
Primary Purpose:
Prevention
Official Title:
Improved Muscle Metabolism by Combination of Muscle Activation and Protein Substitution: a Randomized, Outcome-assessor Blinded, Proof-of-concept Study (IMEMPRO)
Actual Study Start Date :
Jun 27, 2023
Anticipated Primary Completion Date :
Oct 31, 2024
Anticipated Study Completion Date :
Jan 15, 2025

Arms and Interventions

Arm Intervention/Treatment
Experimental: Intervention

High protein substitution plus NMES and EM

Dietary Supplement: Dietary Supplement: additional substitution of protein
Day one (admission) no nutrition is applied. Protein target is increased as follows: to a level of 1,2g/kg/d on day 1 after ICU admission to a level of 1,4g/kg/d on day 2 after ICU admission to a level of 1,6g/kg/d on day 3 after ICU admission to a level of 1,8g/kg/d on day 4 after ICU admission to a level of 2,0g/kg/d from day 5 onwoards Additional protein is given within 2 hours after mobilization respectively: to 0,125g/kg/d on day 1 after ICU admission to 0,2g/kg/d on day 2 after ICU admission to 0,25g/kg/d on day 3 after ICU admission to 0,3g/kg/d from day 4 after ICU admission onwoards

Device: Neuromuscular electrical stimulation
twice daily 60 minutes till day 28 or ICU discharge

Other: Early Mobilization
at least 20 minutes a day following the SOMS concept. Duration: till 28 day or ICU discharge

No Intervention: Control Group

Nutrition and mobilization are carried out according to standard of care.

Outcome Measures

Primary Outcome Measures

  1. Change in cross sectional area (ΔCSA) of the rectus femoris [day 1 (study inclusion) and 14 days]

    Change in muscle mass between study inclusion and study day 14; measured as change of the cross sectional area (ΔCSA) of the rectus femoris muscle via ultrasound.

Secondary Outcome Measures

  1. change in muscle thickness of the rectus femoris [day 1 (study inclusion) until 90-day Follow-up]

    change in muscle thickness from study inclusion until 90-day follow-up, measured via ultrasound.

  2. change in echogenicity of the rectus femoris [day 1 (study inclusion) until 90-day Follow-up]

    change in echogenicity from study inclusion until 90-day follow-up, measured via ultrasound.

  3. change of the pennation angle of the rectus femoris [day 1 (study inclusion) until 90-day Follow-up]

    change of the pennation angle from study inclusion until 90-day follow-up, measured via ultrasound.

  4. change of the muscle strength, measured by the Medical Research Council score (MRC-score) [day 1 (study inclusion) until 90-day Follow-up]

    change of the muscle strength, measured by the Medical Research Council score (MRC-score) from study inclusion until 90-day follow-up

  5. change of the muscle strength, measured by handgrip dynamometry [day 1 (study inclusion) until 90-day Follow-up]

    change of the muscle strength, measured by handgrip dynamometry from study inclusion until 90-day follow-up

  6. change in muscle endurance [up to 90 day follow up]

    change in muscle endurance, measured by the 6-minute walking test up to 90-day follow-up

  7. change in physical physical function [up to 90-day follow-up]

    change in physical physical function, measured by the Short Physical Performance Battery up to 90-day follow-up

  8. development of quality of life [up to 90-day follow-up]

    development of quality of life, measured by the Short Form-36 up to 90-day follow-up

  9. change in Skeletal muscle mass [day 1 (study inclusion) until 90-day Follow-up]

    change in Skeletal muscle mass, measured with bioelectrical impedance analysis up to 90-day follow-up.

  10. change in extracellular volume [day 1 (study inclusion) until 90-day Follow-up]

    change in extracellular volume, measured by the Body impedance analysis

  11. change in the REE (Resting Energy Expenditure) [day 1 (study inclusion) until 90-day Follow-up]

    change in the REE (Resting Energy Expenditure), measured by indirect calorimetry

  12. urea-to-creatinine ratio [day 1 (study inclusion) until 90-day Follow-up]

    urea-to-creatinine ratio from blood sample

  13. Identify possible predictors of muscle wasting in urine metabolomics at ICU admission [day 1 (study inclusion) until 90-day Follow-up]

    Among the urine metabolomics that will be measured, identify metabolites or combinations of metabolites whose high or low concentration(s) at ICU admission associate(s) with the amount of muscle loss. These metabolites are candidate biomarkers that could be used to identify individuals at risk of large muscle wasting and may give further insights into the mechanisms of muscle wasting.

  14. Identify possible predictors of muscle wasting in the blood metabolome at ICU admission [day 1 (study inclusion) until 90-day Follow-up]

    Among the blood metabolome that will be measured, identify metabolites or combinations of metabolites whose high or low concentration(s) at ICU admission associate(s) with the amount of muscle loss. These metabolites are candidate biomarkers that could be used to identify individuals at risk of large muscle wasting and may give further insights into the mechanisms of muscle wasting.

Other Outcome Measures

  1. in-hospital mortality [until 90-day Follow-up]

    Mortality during the Hospital stay

  2. Hospital LOS [until 90-day Follow-up]

    Length of stay in the hospital

  3. ICU-LOS [until 90-day Follow-up]

    Length of stay in the ICU

  4. Hospital mortality [until 90-day Follow-up]

    Mortality during Hospital stay

  5. Duration of Mechanical ventilation [until 90-day Follow-up]

    Duration of invasive mechanical ventilator dependency

  6. ICU mortality [until 90-day Follow-up]

    Mortality during ICU stay

  7. enzyme function in the rectus femoris [according to biopsy inbetween day 1-7]

    Spectrophotometry will be done in muscle samples. All samples will be screened for influence of Intensive Care Unit Acquired Weakness (ICUAW) and correlation with blood metabolome changes.

  8. protein content in the rectus femoris [according to biopsy inbetween day 1-7]

    Western Blot will be done in muscle samples. All samples will be screened for influence of Intensive Care Unit Acquired Weakness (ICUAW) and correlation with blood metabolome changes.

  9. geneexpression in the rectus femoris [according to biopsy inbetween day 1-7]

    qPCR (quantitive polymerase chain reaction) will be done in muscle samples. All samples will be screened for influence of Intensive Care Unit Acquired Weakness (ICUAW) and correlation with blood metabolome changes.

  10. Muscle morphology of the rectus femoris [according to biopsy inbetween day 1-7]

    Light-and Electron-Microscopy will be done in muscle samples. All samples will be screened for influence of Intensive Care Unit Acquired Weakness (ICUAW) and correlation with blood metabolome changes.

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years and Older
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
No
Inclusion Criteria:
  • critically ill adults (≥ 18 years of age)

  • newly admitted to the ICU (<48h)

  • mechanically ventilated, expected to remain for at least 72h

  • enteral nutrition is feasible

Exclusion Criteria:
  • a BMI > 30

  • expected death or withdrawal of life-sustaining treatments

  • prior neuromuscular disease (e.g. paresis, myopathies, neuropathies)

  • injury or disease preventing neuromuscular electrical stimulation or early mobilization (e.g., elevated intracranial pressure, unstable spine)

  • a pacemaker or other electronic implant

  • allergy to components of NMES adhesive

  • have been dependent during activities of daily living prior to the hospital admission

  • a language barrier

Contacts and Locations

Locations

Site City State Country Postal Code
1 Klinikum rechts der Isar, School of Medicine, Technical Universtity of Munich Munich Bavaria Germany 81675
2 Charité - Universitätsmedizin Berlin Berlin Germany 10117

Sponsors and Collaborators

  • Technical University of Munich
  • Fresenius Kabi
  • University Medicine Greifswald
  • Berlin Institute of Health

Investigators

  • Principal Investigator: Stefan J Schaller, MD, TUM, Germany

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
Stefan Schaller, Deputy Clinical Director, Technical University of Munich
ClinicalTrials.gov Identifier:
NCT05919940
Other Study ID Numbers:
  • IMEMPRO
First Posted:
Jun 27, 2023
Last Update Posted:
Jul 4, 2023
Last Verified:
Jun 1, 2023
Individual Participant Data (IPD) Sharing Statement:
Yes
Plan to Share IPD:
Yes
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No
Keywords provided by Stefan Schaller, Deputy Clinical Director, Technical University of Munich
Additional relevant MeSH terms:

Study Results

No Results Posted as of Jul 4, 2023