INsIDER: Imaging the Interplay Between Axonal Damage and Repair in Multiple Sclerosis

Sponsor
University Hospital, Basel, Switzerland (Other)
Overall Status
Recruiting
CT.gov ID
NCT05177523
Collaborator
Swiss National Science Foundation (Other)
300
1
71.9
4.2

Study Details

Study Description

Brief Summary

This project is to:
  1. Quantify differences in axonal integrity and organization in aMS versus naPMS patients.

  2. Quantify changes in axonal integrity and organization in aMS versus naPMS patients over a two-year period.

  3. Validate the combination of imaging parameters that best differentiate aMS versus naPMS patients using histopathology.

Condition or Disease Intervention/Treatment Phase
  • Diagnostic Test: MRI
  • Other: Neurocognitive examination for healthy subjects
  • Other: blood sampling

Detailed Description

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by multifocal inflammatory infiltrates, microglial activation and degradation of oligodendrocytes, myelin and axons. Clinical MS categories exhibit variable amount of central nervous system (CNS) damage and repair, depending on numerous variables including genetic, immunological, pathological and environmental factors.

Therefore, understanding the interplay between axonal damage (i.e. axonal demyelination/degeneration/loss/disorganization) and (ii) axonal repair (i.e. axonal remyelination/reorganization) in living MS patients may be the key to understand disease progression, to establish accurate disease monitoring criteria and to predict disease response to future reparative therapies. New in-vivo methods are necessary to elucidate the interplay between axonal damage and repair in the brain of living patients with MS. Advanced MRI (aMRI) permits a multifaced quantification of the various components of the axons and their organization. Neurite Orientation Dispersion and Density Imaging (NODDI) and Diffusion Kurtosis (DK) are new approaches in clinical research This study is to identify in vivo the specific neuropathological pattern of axonal damage and repair exhibited by active MS (aMS) and non-active progressive MS (naPMS) patient by leveraging the information provided by model-based diffusion metrics (NODDI, DK), Magnetization Transfer Imaging (MTI), Multi-echo Susceptibility-Based imaging (SBI), Myelin Water Imaging (MWI) and quantitative T1 relaxometry (qT1). These advanced MRI contrasts provide complementary and partially redundant information about the axonal structure and its organization (i.e. density and orientation of axons and dendrites in the brain tissue, axonal integrity and myelination, presence of myelin and iron, and brain tissue architecture). Therefore, their combination may prove high sensitivity and specificity to axonal damage and repair.

This project has 3 main aims:

Aim 1. Quantify differences in axonal integrity and organization in aMS versus naPMS patients.

Aim 2. Quantify changes in axonal integrity and organization in aMS versus naPMS patients over a two-year period.

Aim 3. Validate the combination of imaging parameters that best differentiate aMS versus naPMS patients using histopathology.

Study Design

Study Type:
Observational
Anticipated Enrollment :
300 participants
Observational Model:
Cohort
Time Perspective:
Prospective
Official Title:
INsIDER: Imaging the Interplay Between Axonal Damage and Repair in Multiple Sclerosis
Actual Study Start Date :
Sep 4, 2018
Anticipated Primary Completion Date :
Sep 1, 2024
Anticipated Study Completion Date :
Sep 1, 2024

Arms and Interventions

Arm Intervention/Treatment
MS patient group

Recruitment of 200 MS patients at the MS Clinic of the Department of Neurology (Neurologische Klinik und Poliklinik), University Hospital Basel (Universitätsspital Basel)

Diagnostic Test: MRI
Each enrolled subject will undergo a MRI at baseline and a second MRI at 2 years (+/- 3 months) follow-up.

Other: blood sampling
Each enrolled subject will undergo a blood sampling (10 ml) at baseline

control group (HC)

Recruitment of 100 healthy controls (HC) by public announcements (i.e. advertisement/flyer) on the University Hospital's and the University's notice board.

Diagnostic Test: MRI
Each enrolled subject will undergo a MRI at baseline and a second MRI at 2 years (+/- 3 months) follow-up.

Other: Neurocognitive examination for healthy subjects
Neurocognitive examination for healthy subjects will be performed at both baseline and follow-up

Other: blood sampling
Each enrolled subject will undergo a blood sampling (10 ml) at baseline

Outcome Measures

Primary Outcome Measures

  1. MRI- change in axonal integrity and organization over 2 years in aMS, naPMS and HC, by using machine learning techniques [at baseline and 2 years (+/- 3 months) after baseline]

    After magnetic resonance (MR) data preprocessing (image denoising, standardization, bias field correction) classical machine learning techniques will be used to classify a number of MRI metrics which will be averaged over a number of regions of interest (ROIs) including (i) normal-appearing white and brain matter in brain lobes and cervical spinal cord, (ii) basal ganglia, (iii) thalamus, (vi) cerebellum, MS lesions. Complex input data (voxels/patches) will be generated to learn from, then a deep learning model for supervised classification will be defined to identify the combination of aMRI parameters that characterize aMS, naPMS and HC.

Secondary Outcome Measures

  1. Change in MUSIC Test [at baseline and 2 years (+/- 3 months) after baseline]

    Neurocognitive examination. MUSIC is a rapid (about 10-12 min) multiple domain cognitive screening test reflecting the most frequently impaired cognitive domains in MS. At 20-30 points the performance is in the normal range, at 16-19 points there is at most slight cognitive dysfunction, at 11-15 points there is moderate cognitive dysfunction and at <= 10 points there is a clear cognitive dysfunction.

  2. Change in auditory verbal learning and memory test/ Verbaler Lern- und Merkfähigkeitstest (VLMT) [at baseline and 2 years (+/- 3 months) after baseline]

    Questionnaire to investigate memory performance, learning and recall information. Five presentations of a 15-word list are given, each followed by attempted recall. This is followed by a second 15-word interference list (list B), followed by recall of list A. Delayed recall and recognition are also tested.

  3. Change in Symbol Digital Modalities Test (SDMT) [at baseline and 2 years (+/- 3 months) after baseline]

    The SDMT detects cognitive impairment by measuring the time to pair abstracts. Using a reference key, the test taker has 90 seconds to pair specific numbers with given geometric figures.

  4. Change in Brief Visuospatial Memory Test (BVMT) [at baseline and 2 years (+/- 3 months) after baseline]

    The BVMT measures visuospatial memory In three Learning Trials, the respondent views the stimulus page for 10 seconds and is asked to draw as many of the figures as possible in their correct location on a page in the response booklet. A Delayed Recall Trial is administered after a 25-minute delay. Last, a Recognition Trial, in which the respondent is asked to identify which of 12 figures were included among the original geometric figures, is administered. Slower processing speed is associated with poorer learning and memory performance.

  5. Change in Hospital Anxiety and Depression Scale (HADS) [at baseline and 2 years (+/- 3 months) after baseline]

    HADS is a fourteen-item scale with seven items each for anxiety and depression subscales. Scoring for each item ranges from zero to three. A subscale score >8 denotes anxiety or depression.

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years to 80 Years
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
Yes
Inclusion Criteria for patients:
  • Patients may be diagnosed with:
  1. active RRMS (n=100): Relapsing-remitting course and > 1 clinical relapse and/or signs of MRI activity (> 1 Gd enhancing lesion) during the last year before study enrollment.

  2. non-active PMS (n=100): Progressive course (PPMS or SPMS) and no clinical relapses and/or signs of MRI activity during the last year before study enrollment.

  • Age 18-80 years old

  • No other neurological or psychiatric disorder

Inclusion criteria for healthy controls:
  • Age 18-80 years old

  • No other neurological or psychiatric disorder

Exclusion Criteria for patients and healthy controls:
  • Pregnancy

  • Contraindication to MRI (eg, claustrophobia, metallic implants, pacemaker etc).

  • Inability to give consent

Contacts and Locations

Locations

Site City State Country Postal Code
1 University Hospital Basel, Department of Neurology Basel Switzerland 4031

Sponsors and Collaborators

  • University Hospital, Basel, Switzerland
  • Swiss National Science Foundation

Investigators

  • Principal Investigator: Cristina Granziera, Prof. Dr. med., Department of Neurology, University Hospital Basel

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
University Hospital, Basel, Switzerland
ClinicalTrials.gov Identifier:
NCT05177523
Other Study ID Numbers:
  • 2018-01174; me18Granziera
First Posted:
Jan 4, 2022
Last Update Posted:
Jan 4, 2022
Last Verified:
Dec 1, 2021

Study Results

No Results Posted as of Jan 4, 2022