Impact of Sedation With HFNOT on tcPCO2, mitoPO2 and mitoVO2.

Sponsor
Calvin de Wijs, MSc (Other)
Overall Status
Recruiting
CT.gov ID
NCT06124027
Collaborator
(none)
35
1
9.5
3.7

Study Details

Study Description

Brief Summary

Deep procedural sedation has seen an increased use indication over the last couple of years aided by the introduction of high flow nasal oxygen therapy (HFNOT) during these procedures. However, this level of deep sedation does come with the increased risk of examining whether a patient is adequately ventilated during this procedure.

The definition of deep sedation is: 'a drug-induced depression of consciousness during which patients cannot be easily aroused but respond purposefully following repeated or painful stimulation. The ability to independently maintain ventilatory function may be impaired. Patients may require assistance in maintaining a patent airway, and spontaneous ventilation may be inadequate. Cardiovascular function is usually maintained.' As the definition showed there may be an insufficient ventilation during deep sedation. Therefore, HFNOT is used to ensures that the peripheral oxygen saturation is sufficient. However, there are two potential disadvantages. HFNOT can mask the presence of an insufficient respiratory minute volume and an insufficient gas exchange, which can lead to high arterial CO2 (paCO2) levels. Another risk associated with HFNOT is the fact that high oxygen levels are toxic, and prolonged exposure to high partial oxygen pressures, can cause oxidative damage to cell membranes, collapse of the alveoli in the lungs, retinal detachment, and seizures. Most of this damage can be explained by hyperoxia that increases the 'leak' of electrons from the mitochondrial electron transport chain and the resulting increased generation of reactive oxygen species (ROS). Low paCO2 levels and hyperoxia cannot be examined using standard monitoring techniques therefore, this study will use the transcutaneous carbon dioxide (tcPCO2) a proven technique which correlates well to the arterial CO2 (paCO2) to evaluate whether there is an adequate level of ventilation during deep procedural anesthesia with HFNOT. Moreover, the cutaneous mitochondrial oxygenation (mitoPO2) will be monitored to determine the effects that deep procedural sedation with HFNOT has on the cellular oxygenation.

Condition or Disease Intervention/Treatment Phase
  • Device: Monitoring tcPCO2 and mitoPO2

Study Design

Study Type:
Observational
Anticipated Enrollment :
35 participants
Observational Model:
Cohort
Time Perspective:
Prospective
Official Title:
What is the Effect of Deep Procedural Sedation With HFNOT on the tcPCO2, mitoPO2 and mitoVO2.
Actual Study Start Date :
Feb 13, 2023
Anticipated Primary Completion Date :
Nov 30, 2023
Anticipated Study Completion Date :
Nov 30, 2023

Outcome Measures

Primary Outcome Measures

  1. tcPCO2. [up to 6 hours]

    To examine the effects of deep procedural sedation and use of HFNOT on the tcPCO2.

  2. mitoPO2 [up to 6 hours]

    To determine the effects of deep procedural sedation and use of HFNOT on the mitoPO2

Secondary Outcome Measures

  1. mitoVO2 [up to 6 hours]

    To determine the effects of deep procedural sedation and use of HFNOT on the mitoVO2

Eligibility Criteria

Criteria

Ages Eligible for Study:
18 Years and Older
Sexes Eligible for Study:
All
Accepts Healthy Volunteers:
No
Inclusion Criteria:
  • Age over 18 years

  • Acceptable proficiency of the Dutch language

  • Scheduled for a procedure requiring deep procedural sedation with HFNOT.

Exclusion Criteria:
  • Porphyria

  • Known intolerance to components of the ALA plaster

  • Presence of mitochondrial disease

  • Pregnancy/lactation

  • Patients with skin lesions on the measurement location which impede measurements

  • Incapability to provide inform consent, due to a mental condition interfering with the ability to understand the provided information

Contacts and Locations

Locations

Site City State Country Postal Code
1 Erasmus MC Rotterdam South Holland Netherlands 3015GD

Sponsors and Collaborators

  • Calvin de Wijs, MSc

Investigators

None specified.

Study Documents (Full-Text)

None provided.

More Information

Publications

None provided.
Responsible Party:
Calvin de Wijs, MSc, M.D., Erasmus Medical Center
ClinicalTrials.gov Identifier:
NCT06124027
Other Study ID Numbers:
  • MEC-2022-0421
  • NL81086.078.22
First Posted:
Nov 9, 2023
Last Update Posted:
Nov 9, 2023
Last Verified:
Nov 1, 2023
Individual Participant Data (IPD) Sharing Statement:
Undecided
Plan to Share IPD:
Undecided
Studies a U.S. FDA-regulated Drug Product:
No
Studies a U.S. FDA-regulated Device Product:
No

Study Results

No Results Posted as of Nov 9, 2023