Fatty Liver in Obesity: Long-lifestyle Follow-up (FLiO)

Sponsor
Clinica Universidad de Navarra, Universidad de Navarra (Other)
Overall Status
Unknown status
CT.gov ID
NCT03183193
Collaborator
Complejo Hospitalario de Navarra (Other)
120
1
2
42
2.9

Study Details

Study Description

Brief Summary

Non-alcoholic fatty liver disease (NAFLD) is a condition of excessive hepatic lipid accumulation in subjects that consume less than 20g ethanol per day, without other known causes as drugs consumption or toxins exposure. In Western countries, the rate of this disease lies about 30% in the general adult population. The process of developing NAFLD can start from simple steatosis to non-alcoholic steatohepatitis (NASH), which eventually can lead to cirrhosis and hepatocellular carcinoma in the absence of alcohol abuse. Liver biopsy is considered the "gold standard" of steatosis, fibrosis and cirrhosis. However, it is rarely performed because it is an invasive procedure and investigators are focusing in the application of non-invasive liver damage scores for diagnosis.

The pathogenesis of NAFLD is multifactorial and triggered by environmental factors such as unbalanced diets and overnutrition as well as by lack of physical activity in the context of a genetic predisposition. Nowadays, the treatment of NAFLD is based on diet and lifestyle modifications. Weight loss, exercise and healthy eating habits are the main tools to fight NAFLD. Nevertheless, there is no a well characterized dietary pattern and further studies are necessary.

With this background, the general aim of this project is to increase the knowledge on the influence of nutritional/lifestyle interventions in obese patients with NAFLD, as well as contribute to identify non-invasive biomarkers/scores to early diagnosis of this pathology in future obese people.

Condition or Disease Intervention/Treatment Phase
  • Other: Control diet
  • Other: FLiO diet
N/A

Detailed Description

This project is framed within the promotion of health and lifestyles and, specifically, in liver disorder linked to obesity (FLiO: Fatty Liver in Obesity).

The investigation addresses a randomized, parallel, long-term personalized nutritional intervention with two strategies: 1) Control diet based on American Heart Association (AHA); 2) Fatty Liver in Obesity (FLiO) diet based on previous results (RESMENA project).The diet is based on macronutrient distribution, quality and quantity, and is characterized by a low glycemic load, high adherence to the Mediterranean diet and a high antioxidant capacity, with the inclusion of anti-inflammatory foods. It also takes into account the distribution of food throughout the day, number of meals, portion sizes, timing of meal, individual needs, dietary behavior (behavioral therapy: eat slowly, teach what to buy, what to eat, when to eat). The participants are instructed to follow this strategy. This strategy (RESMENA) was even more effective than AHA after 6 months follow-up, in terms of significant reduction of abdominal fat and blood glucose level. In addition, this diet had beneficial effects for participants who were obese and had values of altered glucose, reducing significantly in RESMENA participants LDL-oxidized marker. These results are very important to apply in the present investigation since that patients with NAFLD are commonly insulin resistant.

Both strategies were designed within a hypocaloric dietary pattern (-30%) in order to achieve the American Association for the Study of Liver Diseases (AASLD) recommendations for the management of non-alcoholic liver disease (loss of at least 3-5% of body weight appears necessary to improve steatosis, but a greater weight loss, up to 10%, may be needed to improve necroinflammation). At this time the participants are individually supervised and encouraged to follow with the dietary planning instructions assigned. Furthermore, at baseline, 6, 12 and 24 months anticipated variables are obtained. Both dietary groups receive routine control (weight, body composition, strategy adherence) and dietary advice daily by phone (if they need help) and face to face at the time of routine control.

In order to get a integral lifestyle intervention, all participants will be encouraged to follow a healthy lifestyle. Thus, physical activity will be recorded in each dietary group.

The specific tasks:
  1. To recruit and select patients with the adequate characteristics to validate the conclusions reached.

  2. To develop and adequately transmit to each patient a personalized strategy according to the group randomly assigned ( AASLD vs FLiO strategy).

  3. To check the degree of adherence to the strategy set by regular monitoring: semiquantitative questionnaires of food consumption frequency, pedometers, accelerometers, weight control, satiety.

  4. To assess the effect of each strategy on body composition (weight, waist circumference, body fat, muscle mass, bone mineral density), physical status, general biochemistry (lipid profile, glycaemic profile, albumin, blood count, transaminases), specific biomarkers/metabolites in blood or urine (inflammation, oxidative stress, liver damage, appetite, psychological status), quality of life and related factors (anxiety, depression and sleep).

  5. To check the evolution of the liver damage, using non-invasive techniques (ultrasound, elastography and magnetic resonance imaging (MRI), metabolomics analysis) and calculating different validated liver scores from the data obtained with each strategy.

  6. To compare the effectiveness of strategies, considering not only the ability to decrease body fat, but also other risk factors present in the NAFLD patient such as insulin resistance and cardiovascular risk, which will result in improvement of liver damage.

  7. To analyze SNPs (DNA from oral epithelial cells) and the association with NAFLD (diagnosis and response to the strategies).

  8. To study gene expression (mRNAs) and microRNAs in white blood cells for identifying biomarkers of diagnosis and response to dietary strategy.

  9. To analyze gene DNA methylation patterns in white blood cells for identifying biomarkers of diagnosis and response to dietary strategy.

  10. To describe the intestinal microbiota composition by 16s sequencing at baseline and after nutritional intervention for diagnosis and response.

Study Design

Study Type:
Interventional
Anticipated Enrollment :
120 participants
Allocation:
Randomized
Intervention Model:
Parallel Assignment
Intervention Model Description:
The participants are randomly assigned to Control or FLiO strategy.The participants are randomly assigned to Control or FLiO strategy.
Masking:
Single (Participant)
Primary Purpose:
Treatment
Official Title:
Non-alcoholic Fatty Liver Disease (NAFLD) in Overweight and Obese People Under Nutritional and Lifestyle Follow-up: a Randomized Controlled Trial
Actual Study Start Date :
Jun 1, 2016
Anticipated Primary Completion Date :
Dec 1, 2017
Anticipated Study Completion Date :
Dec 1, 2019

Arms and Interventions

Arm Intervention/Treatment
Placebo Comparator: Control diet

A conventional and balanced diet based on American Heart Association (AHA) guidelines and lifestyle advice to achieve the objective of American Association for the Study of Liver Diseases (AASLD): loss of at least 3-5% of the initial body weight and up to 10% needed to improve necroinflammation.

Other: Control diet
The participants follow a conventional and balanced distribution of macronutrients (30% fat, 15% protein, 55% carbohydrates), adequate fiber (25-30 g/day) and dietary cholesterol (<250 mg/day) intake according to AHA guidelines. This strategy was included within a personalized energy-restricted diet (-30% individual needs) under healthy lifestyle advice in order to achieve the objectives of AASLD (loss of at least 3-5% of the initial body weight and up to 10% needed to improve necroinflammation).
Other Names:
  • American Heart Association diet
  • Experimental: FLiO diet

    A mediterranean dietary strategy based on macronutrient distribution (quantity and quality), antioxidant capacity, meal frequency, dietary behaviour and lifestyle advice to achieve the objective of AASLD: loss of at least 3-5% of the initial body weight and up to 10% needed to improve necroinflammation.

    Other: FLiO diet
    The participants follow a strategy based on a distribution of macronutrients 30-35% lipid (extra virgin olive oil and fatty acids Ω3 in detriment of saturated, trans and cholesterol)/ protein 25% (vegetable against animal)/carbohydrates 40-45% (low glycaemic index, fiber 30-35 g/day); high adherence to the Mediterranean diet and natural antioxidants; meal frequency of 7 meals/day; size/composition of the ration suitable for each moment; including traditional foods with no additional economic cost that will allow diet adherence without abandonment; avoid inappropriate mealtimes and the eating manners as the eating rate. The participants are instructed to follow this strategy within a personalized energy-restricted diet (-30%) and under healthy lifestyle advice to achieve AASLD objectives.
    Other Names:
  • Fatty Liver in Obesity diet
  • Outcome Measures

    Primary Outcome Measures

    1. Change from Baseline Weight at 6 months [Baseline and 6 months]

      Weight will be measured by a digital scale

    2. Change from 6 month Weight at 12 months [6 months and 12 months]

      Weight will be measured by a digital scale

    3. Change from Baseline Weight at 12 months [Baseline and 12 months]

      Weight will be measured by a digital scale

    Secondary Outcome Measures

    1. Change from Baseline Body fat at 6 months [Baseline and 6 months]

      Fat mass will be measured by Dual X-ray absorptiometry

    2. Change from 6 month Body fat at 12 months [6 months and 12 months]

      Fat mass will be measured by Dual X-ray absorptiometry

    3. Change from Baseline Body fat at 12 months [Baseline and 12 months]

      Fat mass will be measured by Dual X-ray absorptiometry

    4. Change from Baseline Waist circumference at 6 months [Baseline and 6 months]

      Waist circumference will be measured with a tape measure

    5. Change from 6 month Waist circumference at 12 months [6 months and 12 months]

      Waist circumference will be measured with a tape measure

    6. Change from Baseline Waist circumference at 12 months [Baseline and 12 months]

      Waist circumference will be measured with a tape measure

    7. Change from Baseline handgrip strength at 6 months [Baseline and 6 months]

      Handgrip strength will be measured with a dynamometer

    8. Change from 6 month handgrip strength at 12 months [6 months and 12 months]

      Handgrip strength will be measured with a dynamometer

    9. Change from Baseline handgrip strength at 12 months [Baseline and 12 months]

      Handgrip strength will be measured with a dynamometer

    10. Change from Baseline Systolic blood pressure at 6 months [Baseline and 6 months]

      Systolic blood pressure will be measured with a sphygmomanometer

    11. Change from 6 month Systolic blood pressure at 12 months [6 months and 12 months]

      Systolic blood pressure will be measured with a sphygmomanometer

    12. Change from Baseline Systolic blood pressure at 12 months [Baseline and 12 months]

      Systolic blood pressure will be measured with a sphygmomanometer

    13. Change from Baseline Diastolic blood pressure at 6 months [Baseline and 6 months]

      Diastolic blood pressure will be measured with a sphygmomanometer

    14. Change from 6 month Diastolic blood pressure at 12 months [6 months and 12 months]

      Diastolic blood pressure will be measured with a sphygmomanometer

    15. Change from Baseline Diastolic blood pressure at 12 months [Baseline and 12 months]

      Diastolic blood pressure will be measured with a sphygmomanometer

    16. Change from Baseline lipid metabolism at 6 months [Baseline and 6 months]

      Serum free fatty acids, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol concentrations will be measured in a fasting state

    17. Change from 6 month lipid metabolism at 12 months [6 months and 12 months]

      Serum free fatty acids, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol concentrations will be measured in a fasting state

    18. Change from Baseline lipid metabolism at 12 months [Baseline and 12 months]

      Serum free fatty acids, triglycerides, total cholesterol, LDL cholesterol and HDL cholesterol concentrations will be measured in a fasting state

    19. Change from Baseline uric acid concentration at 6 months [Baseline and 6 months]

      Serum uric acid will be measured in a fasting state

    20. Change from 6 month uric acid concentration at 12 months [6 months and 12 months]

      Serum uric acid will be measured in a fasting state

    21. Change from Baseline uric acid concentration at 12 months [Baseline and 12 months]

      Serum uric acid will be measured in a fasting state

    22. Change from Baseline homocysteine concentration at 6 months [Baseline and 6 months]

      Serum homocysteine will be measured in a fasting state

    23. Change from 6 month homocysteine concentration at 12 months [6 months and 12 months]

      Serum homocysteine will be measured in a fasting state

    24. Change from Baseline homocysteine concentration at 12 months [Baseline and 12 months]

      Serum homocysteine will be measured in a fasting state

    25. Change from Baseline glucose metabolism at 6 months [Baseline and 6 months]

      Serum glucose levels will be measured in a fasting state

    26. Change from 6 month glucose metabolism at 12 months [6 months and 12 months]

      Serum glucose levels will be measured in a fasting state

    27. Change from Baseline glucose metabolism at 12 months [Baseline and 12 months]

      Serum glucose levels will be measured in a fasting state

    28. Change from Baseline insulin concentration at 6 months [Baseline and 6 months]

      Serum insulin levels will be measured in a fasting state

    29. Change from 6 month insulin concentration at 12 months [6 months and 12 months]

      Serum insulin levels will be measured in a fasting state

    30. Change from Baseline insulin concentration at 12 months [Baseline and 12 months]

      Serum insulin levels will be measured in a fasting state

    31. Change from Baseline Hemoglobin A1c concentration at 6 months [Baseline and 6 months]

      Serum Hemoglobin A1c will be measured in a fasting state

    32. Change from 6 month Hemoglobin A1c concentration at 12 months [6 months and 12 months]

      Serum Hemoglobin A1c will be measured in a fasting state

    33. Change from Baseline Hemoglobin A1c concentration at 12 months [Baseline and 12 months]

      Serum Hemoglobin A1c will be measured in a fasting state

    34. Change from Baseline liver function at 6 months [Baseline and 12 months]

      Serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, total bilirubin, direct bilirubin, alkaline phosphatase, creatinine, total protein, albumin, prothrombin will be measured in a fasting state

    35. Change from 6 month liver function at 12 months [6 months and 12 months]

      Serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, total bilirubin, direct bilirubin, alkaline phosphatase, creatinine, total protein, albumin, prothrombin will be measured in a fasting state

    36. Change from Baseline liver function at 12 months [Baseline and 12 months]

      Serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, total bilirubin, direct bilirubin, alkaline phosphatase, creatinine, total protein, albumin, prothrombin will be measured in a fasting state

    37. Change from Baseline fibroblast growth factor 21 (FGF21) concentration at 6 months [Baseline and 6 months]

      Plasma FGF21 is a specific biomarker of NAFLD and will be measured in a fasting state

    38. Change from 6 month fibroblast growth factor 21 (FGF21) concentration at 12 months [6 months and 12 months]

      Plasma FGF21 is a specific biomarker of NAFLD and will be measured in a fasting state

    39. Change from Baseline fibroblast growth factor 21 (FGF21) concentration at 12 months [Baseline and 12 months]

      Plasma FGF21 is a specific biomarker of NAFLD and will be measured in a fasting state

    40. Change from Baseline cytokeratin-18 (CK18) concentration at 6 months [Baseline and 6 months]

      Plasma CK18 is a specific biomarker of NAFLD and will be measured in a fasting state

    41. Change from 6 month cytokeratin-18 (CK18) concentration at 12 months [6 months and 12 months]

      Plasma CK18 is a specific biomarker of NAFLD and will be measured in a fasting state

    42. Change from Baseline cytokeratin-18 (CK18) concentration at 12 months [Baseline and 12 months]

      Plasma CK18 is a specific biomarker of NAFLD and will be measured in a fasting state

    43. Change from Baseline C-reactive protein (CRP) concentration at 6 months [Baseline and 6 months]

      Plasma CRP will be assessed to determine inflammatory status

    44. Change from 6 month C-reactive protein (CRP) concentration at 12 months [6 months and 12 months]

      Plasma CRP will be assessed to determine inflammatory status

    45. Change from Baseline C-reactive protein (CRP) concentration at 12 months [Baseline and 12 months]

      Plasma CRP will be assessed to determine inflammatory status

    46. Change from Baseline interleukin 6 (IL-6) concentration at 6 months [Baseline and 6 months]

      Plasma IL-6 will be assessed to determine inflammatory status

    47. Change from 6 month interleukin 6 (IL-6) concentration at 12 months [6 months and 12 months]

      Plasma IL-6 will be assessed to determine inflammatory status

    48. Change from Baseline interleukin 6 (IL-6) concentration at 12 months [Baseline and 12 months]

      Plasma IL-6 will be assessed to determine inflammatory status

    49. Change from Baseline tumor necrosis factor-α (TNFα) concentration at 6 months [Baseline and 6 months]

      Plasma TNF-alpha will be assessed to determine inflammatory status

    50. Change from 6 month tumor necrosis factor-α (TNFα) concentration at 12 months [6 months and 12 months]

      Plasma TNF-alpha will be assessed to determine inflammatory status

    51. Change from Baseline tumor necrosis factor-α (TNFα) concentration at 12 months [Baseline and 12 months]

      Plasma TNF-alpha will be assessed to determine inflammatory status

    52. Change from Baseline leptin concentration at 6 months [Baseline and 6 months]

      Plasma leptin will be assessed to determine inflammatory status

    53. Change from 6 month leptin concentration at 12 months [6 months and 12 months]

      Plasma leptin will be assessed to determine inflammatory status

    54. Change from Baseline leptin concentration at 12 months [Baseline and 12 months]

      Plasma leptin will be assessed to determine inflammatory status

    55. Change from Baseline adiponectin concentration at 6 months [Baseline and 6 months]

      Plasma leptin will be assessed to determine inflammatory status

    56. Change from 6 month adiponectin concentration at 12 months [Baseline and 12 months]

      Plasma adiponectin will be assessed to determine inflammatory status

    57. Change from Baseline adiponectin concentration at 12 months [Baseline and 12 months]

      Plasma adiponectin will be assessed to determine inflammatory status

    58. Change from Baseline LDL-oxidized concentration at 6 months [Baseline and 6 months]

      LDL-ox will be assessed to determine oxidative status

    59. Change from 6 month LDL-oxidized concentration at 12 months [6 months and 12 months]

      LDL-ox will be assessed to determine oxidative status

    60. Change from Baseline LDL-oxidized concentration at 12 months [Baseline and 12 months]

      LDL-ox will be assessed to determine oxidative status

    61. Change from Baseline Malondialdehyde concentration at 6 months [Baseline and 6 months]

      Plasma malondialdehyde will be assessed to determine oxidative status

    62. Change from 6 month Malondialdehyde concentration at 12 months [6 months and 12 months]

      Plasma malondialdehyde will be assessed to determine oxidative status

    63. Change from Baseline Malondialdehyde concentration at 12 months [Baseline and 12 months]

      Plasma malondialdehyde will be assessed to determine oxidative status

    64. Change from Baseline plasma antioxidant capacity at 6 months [Baseline and 6 months]

      Plasma antioxidant capacity will be assessed by measuring the ferric reducing ability of plasma (FRAP)

    65. Change from 6 month plasma antioxidant capacity at 12 months [6 months and 12 months]

      Plasma antioxidant capacity will be assessed by measuring the ferric reducing ability of plasma (FRAP)

    66. Change from Baseline plasma antioxidant capacity at 12 months [Baseline and 12 months]

      Plasma antioxidant capacity will be assessed by measuring the ferric reducing ability of plasma (FRAP)

    67. Change from Baseline Hepatic echography at 6 months [Baseline and 6 months]

      Echography will be carried out to analyze liver steatosis

    68. Change from 6 month Hepatic echography at 12 months [6 months and 12 months]

      Echography will be carried out to analyze liver steatosis

    69. Change from Baseline Hepatic echography at 12 months [Baseline and 12 months]

      Echography will be carried out to analyze liver steatosis

    70. Change from Baseline Hepatic elastography at 6 months [Baseline and 6 months]

      Elastography will be carried out to analyze liver fibrosis

    71. Change from 6 month Hepatic elastography at 12 months [6 months and 12 months]

      Elastography will be carried out to analyze liver fibrosis

    72. Change from Baseline Hepatic elastography at 12 months [Baseline and 12 months]

      Elastography will be carried out to analyze liver fibrosis

    73. Change from Baseline Hepatic Magnetic Resonance Imaging at 6 months [Baseline and 6 months]

      Magnetic Resonance Imaging will be carried out to analyze liver status

    74. Change from 6 month Hepatic Magnetic Resonance Imaging at 12 months [6 months and 12 months]

      Magnetic Resonance Imaging will be carried out to analyze liver status

    75. Change from Baseline Hepatic Magnetic Resonance Imaging at 12 months [Baseline and 12 months]

      Magnetic Resonance Imaging will be carried out to analyze liver status

    76. Change from Baseline White blood cell count at 6 months [Baseline and 6 months]

      White blood cell count includes: Leucocytes, Neutrophils, Lymphocytes, Monocytes, Eosinophil, Basophils.

    77. Change from 6 month White blood cell count at 12 months [6 months and 12 months]

      White blood cell count includes: Leucocytes, Neutrophils, Lymphocytes, Monocytes, Eosinophil, Basophils.

    78. Change from Baseline White blood cell count at 12 months [Baseline and 12 months]

      White blood cell count includes: Leucocytes, Neutrophils, Lymphocytes, Monocytes, Eosinophil, Basophils.

    79. Change from Baseline blood rheological properties at 6 months [Baseline and 6 months]

      Red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, platelet count, platelet distribution width, mean platelet volume, plateletcrit

    80. Change from 6 month blood rheological properties at 12 months [6 months and 12 months]

      Red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, platelet count, platelet distribution width, mean platelet volume, plateletcrit

    81. Change from Baseline blood rheological properties at 12 months [Baseline and 12 months]

      Red blood cell count, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, platelet count, platelet distribution width, mean platelet volume, plateletcrit

    82. Change from Baseline Physical activity level at 6 months [Baseline and 6 months]

      Physical activity will be assessed by accelerometers

    83. Change from 6 months Physical activity level at 12 months [6 months and 12 months]

      Physical activity will be assessed accelerometers

    84. Change from Baseline Physical activity level at 12 months [Baseline and 12 months]

      Physical activity will be assessed by accelerometers

    85. Change from Baseline Minnesota Physical Activity test at 6 months [Baseline and 6 months]

      Physical activity assessed by Minnesota Physical Activity test

    86. Change from 6 month Minnesota Physical Activity test at 12 months [6 months and 12 months]

      Physical activity assessed by Minnesota Physical Activity test

    87. Change from Baseline Minnesota Physical Activity test at 12 months [Baseline and 12 months]

      Physical activity assessed by Minnesota Physical Activity test

    88. Change from Baseline number of steps at 6 months [Baseline and 6 months]

      Physical activity assessed by Pedometers

    89. Change from 6 month number of steps at 12 months [6 months and 12 months]

      Physical activity assessed by Pedometers

    90. Change from Baseline number of steps at 12 months [Baseline and 12 months]

      Physical activity assessed by Pedometers

    91. Change from Baseline chair test at 6 months [Baseline and 6 months]

      Physical activity assessed by the chair test

    92. Change from 6 month chair test at 12 months [6 months and 12 months]

      Physical activity assessed by the chair test

    93. Change from Baseline chair test at 12 months [Baseline and 12 months]

      Physical activity assessed by the chair test

    94. Change from Baseline sleep quality at 6 months [Baseline and 12 months]

      Sleep information will be assessed by the Pittsburgh Sleep Quality Index

    95. Change from 6 month sleep quality at 12 months [6 months and 12 months]

      Sleep information will be assessed by the Pittsburgh Sleep Quality Index

    96. Change from Baseline sleep quality at 12 months [Baseline and 12 months]

      Sleep information will be assessed by the Pittsburgh Sleep Quality Index

    97. Change from Baseline Depressive symptoms at 6 months [Baseline and 6 months]

      Depressive symptoms will be assessed by the Beck Depression Inventory (BDI)

    98. Change from 6 month Depressive symptoms at 12 months [6 months and 12 months]

      Depressive symptoms will be assessed by the Beck Depression Inventory (BDI)

    99. Change from Baseline Depressive symptoms at 12 months [Baseline and 12 months]

      Depressive symptoms will be assessed by the Beck Depression Inventory (BDI)

    100. Change from Baseline Anxiety symptoms at 6 months [Baseline and 6 months]

      Anxiety symptoms will be assessed by State Anxiety test (STAI)

    101. Change from 6 month Anxiety symptoms at 12 months [6 months and 12 months]

      Anxiety symptoms will be assessed by State Anxiety test (STAI)

    102. Change from Baseline Anxiety symptoms at 12 months [Baseline and 12 months]

      Anxiety symptoms will be assessed by State Anxiety test (STAI)

    103. Single Nucleotide polymorphisms (SNPs) [Baseline]

      Single nucleotide polymorphisms will be determined by Genomic DNA from oral epithelial cells

    104. Change from Baseline DNA methylation at 6 months [Baseline and 6 months]

      Epigenetics will be assessed by changes in DNA methylation of genes related with NAFLD development

    105. Change from 6 month DNA methylation at 12 months [6 months and 12 months]

      Epigenetics will be assessed by changes in DNA methylation of genes related with NAFLD development

    106. Change from Baseline DNA methylation at 12 months [Baseline and 12 months]

      Epigenetics will be assessed by changes in DNA methylation of genes related with NAFLD development

    107. Change from Baseline microRNAs at 6 months [Baseline and 6 months]

      Transcriptomic will be assessed by changes in miRNAs

    108. Change from 6 month microRNAs at 12 months [6 months and 12 months]

      Transcriptomic will be assessed by changes in miRNAs

    109. Change from Baseline microRNAs at 12 months [Baseline and 12 months]

      Transcriptomic will be assessed by changes in miRNAs

    110. Change from Baseline Gut microbiota composition at 6 months [Baseline and 6 months]

      Gut microbiota composition will be analyzed

    111. Change from 6 month Gut microbiota composition at 12 month [6 months and 12 months]

      Gut microbiota composition will be analyzed

    112. Change from Baseline Gut microbiota composition at 12 month [Baseline and 12 months]

      Gut microbiota composition will be analyzed

    113. Change from Baseline metabolites composition of urine at 6 months [Baseline and 6 months]

      Metabolites composition of urine will be analyzed

    114. Change from 6 month metabolites composition of urine at 12 months [6 months and 12 months]

      Metabolites composition of urine will be analyzed

    115. Change from Baseline metabolites composition of urine at 12 months [Baseline and 12 months]

      Metabolites composition of urine will be analyzed

    116. Change from Baseline metabolites composition of serum at 6 months [Baseline and 6 months]

      Metabolites composition of serum will be analyzed

    117. Change from 6 month metabolites composition of serum at 12 months [6 months and 12 months]

      Metabolites composition of serum will be analyzed

    118. Change from Baseline metabolites composition of serum at 12 months [Baseline and 12 months]

      Metabolites composition of serum will be analyzed

    119. Change from Baseline dietary intake at 6 months [Baseline and 6 months]

      Dietary intake will be assessed by means of food frequency questionnaire

    120. Change from 6 month dietary intake at 12 months [6 months and 12 months]

      Dietary intake will be assessed by means of food frequency questionnaire

    121. Change from Baseline dietary intake at 12 months [Baseline and 12 months]

      Dietary intake will be assessed by means of food frequency questionnaire

    122. Assessment of dietary adherence at Baseline [Baseline]

      Dietary adherence will be assessed by means of 3 day weighed food records

    123. Assessment of dietary adherence at 6 months [6 months]

      Dietary adherence will be assessed by means of 3 day weighed food records

    124. Assessment of dietary adherence at 12 months [12 months]

      Dietary adherence will be assessed by means of 3 day weighed food records

    125. Change from Baseline satiety index at 6 months [Baseline and 6 months]

      Satiety index/appetite will be assessed by using the 100 mm Visual Analogue Scale

    126. Change from 6 month satiety index at 12 months [6 months and 12 months]

      Satiety index/appetite will be assessed by using the 100 mm Visual Analogue Scale

    127. Change from Baseline satiety index at 12 months [Baseline and 12 months]

      Satiety index/appetite will be assessed by using the 100 mm Visual Analogue Scale

    128. Change from Baseline life quality index at 6 months [Baseline and 6 months]

      Life quality index will be assessed by means of the Short Form 36 (SF-36) questionnaire

    129. Change from 6 month life quality index at 12 months [6 months and 12 months]

      Life quality index will be assessed by means of the Short Form 36 (SF-36) questionnaire

    130. Change from Baseline life quality index at 12 months [Baseline and 12 months]

      Life quality index will be assessed by means of the Short Form 36 (SF-36) questionnaire

    131. Change from Baseline Ghrelin concentration at 6 months [Baseline and 6 months]

      Serum Active Ghrelin will be determined to assess satiety

    132. Change from 6 month Ghrelin concentration at 12 months [6 months and 12 months]

      Serum Active Ghrelin will be determined to assess satiety

    133. Change from Baseline Ghrelin concentration at 12 months [Baseline and 12 months]

      Serum Active Ghrelin will be determined to assess satiety

    134. Change from Baseline glucagon-like peptide-1 (GLP-1) concentration at 6 months [Baseline and 6 months]

      Serum active glucagon-like peptide-1 will be determined to assess satiety

    135. Change from 6 month glucagon-like peptide-1 (GLP-1) concentration at 12 months [6 months and 12 months]

      Serum active glucagon-like peptide-1 will be determined to assess satiety

    136. Change from Baseline glucagon-like peptide-1 (GLP-1) concentration at 12 months [Baseline and 12 months]

      Serum active glucagon-like peptide-1 will be determined to assess satiety

    137. Change from Baseline Dopamine concentration at 6 months [Baseline and 6 months]

      Peripheral Dopamine concentration will be analysed using high-performance liquid chromatography (HPLC)

    138. Change from 6 month Dopamine concentration at 12 months [6 months and 12 months]

      Peripheral Dopamine concentration will be analysed using high-performance liquid chromatography (HPLC)

    139. Change from Baseline Dopamine concentration at 12 months [Baseline and 12 months]

      Peripheral Dopamine concentration will be analysed using high-performance liquid chromatography (HPLC)

    140. Change from Baseline Dopac concentration at 6 months [Baseline and 6 months]

      Peripheral Dopac concentration will be analysed using high-performance liquid chromatography (HPLC)

    141. Change from 6 month Dopac concentration at 12 months [6 months and 12 months]

      Peripheral Dopac concentration will be analysed using high-performance liquid chromatography (HPLC)

    142. Change from Baseline Dopac concentration at 12 months [Baseline and 12 months]

      Peripheral Dopac concentration will be analysed using high-performance liquid chromatography (HPLC)

    143. Change from Baseline Serotonin (5-HT) concentration at 6 months [Baseline and 6 months]

      Peripheral Serotonin concentration will be analysed using high-performance liquid chromatography (HPLC)

    144. Change from 6 month Serotonin (5-HT) concentration at 12 months [6 months and 12 months]

      Peripheral Serotonin concentration will be analysed using high-performance liquid chromatography (HPLC)

    145. Change from Baseline Serotonin (5-HT) concentration at 12 months [Baseline and 12 months]

      Peripheral Serotonin concentration will be analysed using high-performance liquid chromatography (HPLC)

    146. Change from Baseline Noradrenaline concentration at 6 months [Baseline and 6 months]

      Peripheral Noradrenaline concentration will be analysed using high-performance liquid chromatography (HPLC)

    147. Change from 6 month Noradrenaline concentration at 12 months [6 months and 12 months]

      Peripheral Noradrenaline concentration will be analysed using high-performance liquid chromatography (HPLC)

    148. Change from Baseline Noradrenaline concentration at 12 months [Baseline and 12 months]

      Peripheral Noradrenaline concentration will be analysed using high-performance liquid chromatography (HPLC)

    149. Change from Baseline 5-hydroxyindoleacetic acetic (5-HIAAC) concentration at 6 months [Baseline and 6 months]

      Peripheral 5-hydroxyindoleacetic acetic concentration will be analysed using high-performance liquid chromatography (HPLC)

    150. Change from 6 month 5-hydroxyindoleacetic acetic (5-HIAAC) concentration at 12 months [6 months and 12 months]

      Peripheral 5-hydroxyindoleacetic acetic concentration will be analysed using high-performance liquid chromatography (HPLC)

    151. Change from Baseline 5-hydroxyindoleacetic acetic (5-HIAAC) concentration at 12 months [Baseline and 12 months]

      Peripheral 5-hydroxyindoleacetic acetic concentration will be analysed using high-performance liquid chromatography (HPLC)

    Eligibility Criteria

    Criteria

    Ages Eligible for Study:
    30 Years to 80 Years
    Sexes Eligible for Study:
    All
    Accepts Healthy Volunteers:
    No
    Inclusion Criteria:
    • Overweight or obese

    • Diagnosis of NAFLD

    • Age: 30-80 years

    • Female / Male

    Exclusion Criteria:
    • Known liver disease (other than NAFLD)

    • Abuse of alcohol (>21 and >14 units of alcohol a week for men and women, respectively, eg 1 unit = 125 mL of wine);

    • Drug treatments: immunosuppressants, cytotoxic agents, systemic corticosteroids, agents potentially causing fatty liver disease or abnormal liver tests or weight modifiers

    • Active cancer or a history of malignancy in the last 5 years

    • Problems of massive edemas

    • Obesity known endocrine origin (except treated hypothyroidism)

    • Surgical procedure for weight loss

    • ≥ 3kg weight loss in the last 3 months

    • Severe psychiatric disorders

    • Lack of autonomy or inability to follow the diet (including food allergies or intolerances) or/and lifestyle recommendations as well as to follow scheduled visits.

    • Consumption of any type of food supplements (antioxidants, prebiotics, probiotics, etc.)

    Contacts and Locations

    Locations

    Site City State Country Postal Code
    1 Centre for Nutrition Research, University of Navarra Pamplona Navarra Spain 31008

    Sponsors and Collaborators

    • Clinica Universidad de Navarra, Universidad de Navarra
    • Complejo Hospitalario de Navarra

    Investigators

    • Principal Investigator: M. Angeles Zulet, PhD, Centre for Nutrition Research, University of Navarra. CIBER Obesity and Physiopathology of Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
    • Study Director: J. Alfredo Martínez, MD, PhD, Centre for Nutrition Research, University of Navarra. CIBER Obesity and Physiopathology of Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
    • Study Director: Itziar Abete, PhD, Centre for Nutrition Research, University of Navarra. CIBER Obesity and Physiopathology of Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
    • Study Chair: Fermín I Milagro, PhD, Centre for Nutrition Research, University of Navarra. CIBER Obesity and Physiopathology of Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
    • Study Chair: J. Ignacio Riezu, PhD, Centre for Nutrition Research, University of Navarra.
    • Study Chair: Mariana Elorz, MD, Clínica Universidad de Navarra
    • Study Chair: J. Ignacio Herrero, PhD, Clinica Universidad de Navarra
    • Study Chair: Jorge Quiroga, PhD, Clinica Universidad de Navarra
    • Study Chair: Alberto Benito, PhD, Clinica Universidad de Navarra
    • Study Chair: Carmen Fuertes, Clinica Universidad de Navarra
    • Study Chair: Santiago Navas, PhD, Centre for Nutrition Research, University of Navarra. CIBER Obesity and Physiopathology of Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
    • Study Chair: Eva Almirón, PhD, Centre for Nutrition Research, University of Navarra.
    • Study Chair: Berta Araceli Marín, University of Navarra
    • Study Chair: Irene Cantero, University of Navarra
    • Study Chair: Maria Vanessa Bullon, University of Navarra
    • Study Chair: Blanca Martínez de Morentín, MD, University of Navarra
    • Study Chair: Salomé Pérez, University of Navarra
    • Study Chair: Veronica Ciaurriz, University of Navarra
    • Study Chair: Ana Martínez, MD, Complejo Hospitalario de Navarra
    • Study Chair: Juan Uriz, PhD, Complejo Hospitalario de Navarra
    • Study Chair: María Pilar Huarte, PhD, Complejo Hospitalario de Navarra
    • Study Chair: J. Ignacio Monreal, MD, PhD, Clinica Universidad de Navarra

    Study Documents (Full-Text)

    None provided.

    More Information

    Publications

    Responsible Party:
    Marian Zulet, Principal Investigator, University of Navarra
    ClinicalTrials.gov Identifier:
    NCT03183193
    Other Study ID Numbers:
    • FLiO
    First Posted:
    Jun 12, 2017
    Last Update Posted:
    Jun 12, 2017
    Last Verified:
    Jun 1, 2017

    Study Results

    No Results Posted as of Jun 12, 2017